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Abstract. This paper will show how the ontology of the Process Specification

Language can be used as an upper-level process ontology that serves as the

semantic foundation for the DAML-S ontology for web services.

1. Semantics for Web Services

To achieve the vision of the Semantic Web, software agents will need a computer-
interpretable description of the services they offer and the information that they
access. Such a description can be provided by an ontology, which explicitly repre-
sents the intended meanings of the terms being used. Within the DARPA Agent
Markup Language program, an ontology of services called OWL-S has been pro-
posed to support the discovery, invocation, and composition of the services offered
by software agents on the Semantic Web.

The Process Specification Language (PSL) ([2], [4], [5]) has been designed to
facilitate correct and complete exchange of process information among manufac-
turing systems 1. Included in these applications are scheduling, process modeling,
process planning, production planning, simulation, project management, workflow,
and business process reengineering. In this paper we will show how PSL can be
used as an upper-level process ontology that serves as the semantic foundation for
an ontology for web services that extends OWL-S.

Any ontology that supports the representation of web services will consist of
generic classes to support service specification as well as classes of constraints in
service specifications, such as ordering, temporal, occurrence, and duration.

The ontology must also support reasoning problems for web service specifications
such as determining the consistency of a service specification and the composability
of services, particularly with incomplete service specifications.

The approach taken in this paper will be to specify a first-order semantics for
OWL-S concepts through PSL translation definitions and then use the grammars
associated with PSL classes as an abstract syntax for service specifications.

1PSL is project ISO 18629 within the International Organisation of Standardisation, and has
been accepted as a Draft International Standard.
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2. The Role of First-Order Logic

The PSL Ontology is a set of theories in the language of first-order logic. There
are several other approaches to semantics for web services, such as BPEL [1], for
which Petri nets and π-calculus have been proposed as the basis for their semantics.
However, a first-order semantics has several advantages. First, we can specify and
implement inference techniques that are sound and complete with respect to models
of the theories. Also, a process ontology with a first-order axiomatization can be
more easily integrated with other ontologies (which are almost all first-order theories
themselves). Finally, a first-order semantics allows a simple characterization of
incomplete service specifications.

The semantics of a first-order theory are based on the notion of an interpretation
that specifies a meaning for each symbol in a sentence of the language. In practice,
interpretations are typically specified by identifying each symbol in the language
with an element of some algebraic or combinatorial structure, such as graphs, linear
orderings, partial orderings, groups, fields, or vector spaces; the underlying theory
of the structure then becomes available as a basis for reasoning about the concepts
and their relationships.

First-order logic is sound and complete – a theory is consistent if and only if there
exists a model that satisfies the axioms of the theory. This allows us to evaluate
the adequacy of the application’s ontology with respect to some class of structures
that capture the intended meanings of the ontology’s terms by proving that the
ontology obeys the following two fundamental theorems:

• Satisfiability: every structure in the class is a model of the ontology.
• Axiomatizability: every model of the ontology is isomorphic to some struc-

ture in the class.

The purpose of the Axiomatizability Theorem is to demonstrate that there do
not exist any unintended models of the theory, that is, any models that are not
specified in the class of structures. In general, this would require second-order
logic, but the design of PSL makes the following assumption (hereafter referred to
as the Interoperability Hypothesis): The ontology supports interoperability among
first-order inference engines that exchange first-order sentences. By this hypothesis,
we do not need to restrict ourselves to elementary classes of structures when we
are axiomatizing an ontology. Since the applications are equivalent to first-order
inference engines, they cannot distinguish between structures that are elementarily
equivalent. Thus, the unintended models are only those that are not elementarily
equivalent to any model in the class of structures.

Classes of structures for theories within the PSL Ontology are therefore axioma-
tized up to elementary equivalence – the theories are satisfied by any model in the
class, and any model of the core theories is elementarily equivalent to a model in
the class. Further, each class of structures is characterized up to isomorphism.

3. PSL Ontology

Within the PSL Ontology, there is a further distinction between core theories
and definitional extensions. Core theories introduce new primitive concepts, while
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Figure 1. The core theories of the PSL Ontology. Solid lines
indicate conservative extension, while dashed lines indicate an ex-
tension that is not conservative.

all terms introduced in a definitional extension that are conservatively defined using
the terminology of the core theories 2.

3.1. Core Theories. All core theories within the ontology are consistent exten-
sions of PSL-Core (Tpsl core), although not all extensions need be mutually con-
sistent. Also, the core theories need not be conservative extensions of other core
theories. The relationships among the core theories in the PSL Ontology are de-
picted in Figure 1.

3.1.1. Occurrence Trees. The occurrence trees that are axiomatized in the core
theory Tocctree are partially ordered sets of activity occurrences, such that for a
given set of activities, all discrete sequences of their occurrences are branches of
the tree (see Figure 2). An occurrence tree contains all occurrences of all activities;
it is not simply the set of occurrences of a particular (possibly complex) activity.
Because the tree is discrete, each activity occurrence in the tree has a unique
successor occurrence of each activity.

There are constraints on which activities can possibly occur in some domain.
This intuition is the cornerstone for characterizing the semantics of classes of activ-
ities and process descriptions. Although occurrence trees characterize all sequences
of activity occurrences, not all of these sequences will intuitively be physically pos-
sible within the domain. We will therefore want to consider the subtree of the

2The complete set of axioms for the PSL Ontology can be found at
http://www.mel.nist.gov/psl/psl-ontology/. Core theories are indicated by a .th suffix

and definitional extensions are indicated by a .def suffix.
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Figure 2. Example of legal occurrence trees. The elements o1
i

denote occurrences of the activity a1, o2
i denote occurrences of the

activity a2, o3
i denote occurrences of the activity a3, and o4

i denote
occurrences of the activity a4. The activity occurrences o1

1 and o4
16

are the initial occurrences in their respective occurrence trees.

occurrence tree that consists only of possible sequences of activity occurrences; this
subtree is referred to as the legal occurrence tree.

3.1.2. Discrete States. The core theory Tdisc state introduces the notion of state
(fluents). Fluents are changed only by the occurrence of activities, and fluents do
not change during the occurrence of primitive activities. In addition, activities have
preconditions (fluents that must hold before an occurrence) and effects (fluents that
always hold after an occurrence).

3.1.3. Subactivities. The PSL Ontology uses the subactivity relation to capture the
basic intuitions for the composition of activities. This relation is a discrete partial
ordering, in which primitive activities are the minimal elements.

3.1.4. Atomic Activities. The core theory Tatomic axiomatizes intuitions about the
concurrent aggregation of primitive activities. This concurrent aggregation is rep-
resented by the occurrence of concurrent activities, rather than concurrent activity
occurrences.

3.1.5. Complex Activities. The core theory Tcomplex characterizes the relationship
between the occurrence of a complex activity and occurrences of its subactivities.
Occurrences of complex activities correspond to sets of occurrences of subactivities;
in particular, these sets are subtrees of the occurrence tree. An activity tree consists
of all possible sequences of atomic subactivity occurrences beginning from a root
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subactivity occurrence. In a sense, activity trees are a microcosm of the occurrence
tree, in which we consider all of the ways in which the world unfolds in the context
of an occurrence of the complex activity.

Different subactivities may occur on different branches of the activity tree, so
that different occurrences of an activity may have different subactivity occurrences
or different orderings on the same subactivity occurrences. In this sense, branches of
the activity tree characterize the nondeterminism that arises from different ordering
constraints or iteration.

An activity will in general have multiple activity trees within an occurrence
tree, and not all activity trees for an activity need be isomorphic. Different activity
trees for the same activity can have different subactivity occurrences. Following this
intuition, the core theory Tcomplex does not constrain which subactivities occur. For
example, conditional activities are characterized by cases in which the state that
holds prior to the activity occurrence determines which subactivities occur. In fact,
an activity may have subactivities that do not occur; the only constraint is that
any subactivity occurrence must correspond to a subtree of the activity tree that
characterizes the occurrence of the activity.

3.2. Definitional Extensions. Many ontologies are specified as taxonomies or
class hierarchies, yet few ever give any justification for the classification. If we con-
sider ontologies of mathematical structures, we see that logicians classify models
by using properties of models, known as invariants, that are preserved by isomor-
phism. For some classes of structures, such as vector spaces, invariants can be used
to classify the structures up to isomorphism; for example, vector spaces can be
classified up to isomorphism by their dimension. For other classes of structures,
such as graphs, it is not possible to formulate a complete set of invariants. However,
even without a complete set, invariants can still be used to provide a classification
of the models of a theory.

Following this methodology, the set of models for the core theories of PSL are
partitioned into equivalence classes defined with respect to the set of invariants of
the models. Each equivalence class in the classification of PSL models is axioma-
tized using a definitional extension of PSL. In particular, each definitional extension
in the PSL Ontology is associated with a unique invariant; the different classes of
activities or objects that are defined in an extension correspond to different proper-
ties of the invariant. In this way, the terminology of the PSL Ontology arises from
the classification of the models of the core theories with respect to sets of invari-
ants. The terminology within the definitional extensions intuitively corresponds to
classes of activities and objects.

4. Translation Definitions

Translation definitions specify the mappings between PSL and application on-
tologies. Such definitions have a special syntactic form – they are biconditionals in
which the antecedent is a class in the application ontology and the consequent is a
formula that uses only the lexicon of the PSL Ontology.

Translation definitions are generated using the organization of the definitional
extensions. Each invariant from the classification of models corresponds to a dif-
ferent definitional extension. Any particular activity, activity occurrence, or fluent
will have a unique value for the invariant. Each class of activity, activity occur-
rence, or fluent corresponds to a different value for the invariant. The consequence
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of a translation definition is equivalent to the list of invariant values for members
of the application ontology class.

4.1. OWL-S Translation Definitions. In this section we will present the trans-
lation definitions 3 for concepts in the OWL-S Process Ontology. Such translation
definitions provide a first-order axiomatization of the intended semantics for the
OWL-S constructs. Moreover, this axiomatization inherits the proofs of the Ax-
iomatizability and Satisfiability Theorems from the underlying PSL Ontology.

4.1.1. Atomic Activities. The composedOf property in OWL-S is equivalent to the
subactivity relation in PSL:

(forall (?a1 ?a2)
(iff (composedOf ?a1 ?a2)

(subactivity ?a2 ?a1)))

Within OWL-S, an AtomicProcess has no subprocesses; consequently, this cor-
responds to a primitive activity within PSL.

(forall (?a)
(iff (AtomicProcess ?a)

(and (primitive ?a)
(markov_precond ?a)
(or (markov_effects ?a)

(context_free ?a)))))

The most common constraint on the legal occurrences of an activity specify the
activity’s preconditions. Activities whose preconditions depend only on the state
prior to the occurrences are said to have markovian preconditions; this class of
activities is defined in the PSL definitional extension state precond.def .

Effects characterize the ways in which activity occurrences change the state of
the world. Such effects may be context-free, so that all occurrences of the activity
change the same states, or they may be constrained by other conditions. The most
common constraints are state-based effects that depend on the context; the class
of activity associated with such constraints is defined as markov effect activities
in the PSL extension state effects.def .

A CompositeProcess in OWL-S is decomposable into other processes. Within
PSL, the corresponding activity cannot be primitive; it will either be atomic (in
which case it is a concurrent activity) or complex:

(forall (?a)
(iff (CompositeProcess ?a)

(and (activity ?a)
(not (primitive ?a)))))

4.1.2. Ordered Activities. The classification of models within the the PSL Ontology
leads to classes of activities, activity occurrences, and fluents. Classes of activity
occurrences correspond to invariants for activity trees. The translation definitions
for remaining OWL-S concepts are all related to invariants for activity trees.

3The translation definitions in this paper are written in the Knowledge Interchange Format.
For more information on this language, see http:cl.tamu.edu.
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Figure 3. Example of activity trees for transfer, which is a Se-
quence OWL-S activity. o1 and o3 are occurrences of the subactiv-
ity withdraw, while o2 and o4 are occurrences of the subactivity
deposit. Note that the diagram depicts two separate activity trees
within a stylized legal occurrence tree.

Within OWL-S, a Sequence is a list of processes to be done in order (see Figure
3) 4. The translation definition for Sequence has two parts; one says that there
exists an activity tree for the activity which is ordered and which is simple and
rigid (that is, there are no nontrivial permutations of subactivity occurrences).
The second part says that the activity is uniform, that is, all activity trees for the
activity are isomorphic: 5

(forall (?a)
(iff (Sequence ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(simple ?occ)
(rigid ?occ)
(ordered ?occ)
(strong_poset ?occ))))))

4All of the examples in this section refer to the activities whose process descriptions are found
in the Appendix.

5Two branches of an activity tree are isomorphic if there is a one-to-one mapping of subactivity
occurrences that preserves the activities, e.g., occurrences of activity a1 are mapped to occurrences

of a1. Two activity trees are isomorphic if all of their branches are isomorphic. In the visual

convention adopted in this paper, occurrences of different activities are depicted by different
shapes; thus, a mapping that preserves activities will map a square to a square, a circle to a circle,

and so on.
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Figure 4. Example of an activity tree for buy product, which is a
Split OWL-S activity. For the purposes of this example, consider
transfer to be a complex activity, with deposit and withdraw as
subactivities.

In a OWL-S Split activity, sets of subactivities are performed in parallel (see
Figure 4). Split activities differ from Sequence activities in that there exist non-
trivial permutations of subactivity occurrences among the branches of the activity
trees, so that the translation definition becomes:
(forall (?a)

(iff (Split ?a)
(and (uniform ?a)

(exists (?occ)
(and (occurrence_of ?occ ?a)

(not (simple ?occ))
(ordered ?occ)
(strong_poset ?occ))))))

For example, in Figure 4, the two branches of the activity tree consist of isomor-
phic subactivity occurrences that occur in different orderings on each branch.

According to [3], the Unordered construct allows process components to be ex-
ecuted in some unspecified order, although all components must be executed. This
is equivalent to the class of bag activity trees within the PSL Ontology:
(forall (?a)

(iff (Unordered ?a)
(and (uniform ?a)

(exists (?occ)
(and (occurrence_of ?occ ?a)

(bag ?occ))))))

In Figure 5, we see an example of an activity tree that is the unordered activity
with two subactivities.
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Figure 5. Example of an activity tree for buy product, which is an
Unordered OWL-S activity. For the purpose of this example, con-
sider transfer to be a primitive activity; o1 and o4 are occurrences
of the subactivity (transfer ?Fee ?Buyer ?Broker), o2 and o4

are occurrences of the subactivity (transfer ?Cost ?Buyer
?Seller).

4.1.3. Nondeterminism. The simplest form of nondeterminism is captured by the
class of activities in which some subactivity occurs (see Figure 6). Given this
intended semantics, the translation definition to PSL would be:

(forall (?a)
(iff (Choice ?a)

(and (uniform ?a)
(exists (?occ)

(and (occurrence_of ?occ ?a)
(simple ?occ)
(rigid ?occ)
(unordered ?occ)
(choice_poset ?occ))))))

There are some indications in [3] that the intended semantics for Choice activ-
ities are more general than this translation definition. For example, some possible
applications of this construct may be intended to capture intuitions such as “choose
subactivities and perform them in sequence” or “choose subactivities and perform
them in parallel.” In such cases, the corresponding PSL class would be based on
the notion of weak posets (see Figure 7), so that the translation definition would
be:

(forall (?a)
(iff (Choice ?a)

(and (uniform ?a)
(exists (?occ)
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Figure 6. Example of an activity tree for a Choice OWL-S ac-
tivity that is equivalent to a choice poset in PSL. In this example,
o1 is an occurrence of a withdrawal from Account1 and o2 is an
occurrence of a withdrawal from Account3.
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Figure 7. Example of an activity tree for a Choice OWL-S activ-
ity that is equivalent to a weak poset in PSL.

(and (occurrence_of ?occ ?a)
(simple ?occ)
(weak_poset ?occ))))))
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Figure 8. Example of activity trees for withdraw, which is an
IfThenElse OWL-S activity. o2 and o3 are occurrences of the sub-
activity change balance, and o1 is an occurrence of the subactivity
notify.

In addition, there are suggestions in [3] for extensions that construct new sub-
classes such as “choose exactly n subactivities from m.” Such extensions do not
correspond to any classes within Version 2.0 of the PSL Ontology.

4.1.4. Conditional Activities. The class of IfThenElse activities within OWL-S are
equivalent to conditional activities in PSL:
(forall (?a)

(iff (IfThenElse ?a)
(conditional ?a)))

Conditional activities are not uniform; however, if the same fluents hold prior
to two occurrences of a conditional activity, then the activity trees for the activity
are isomorphic. Figure 8 depicts three different activity trees, two of which are
isomorphic.

4.1.5. Iterated Activities. The intended semantics of the Iterate process in OWL-
S makes no assumption about how many iterations are made, or when to terminate.
Within PSL, this corresponds to an activity in which there exist multiple isomorphic
subtrees; for example, the activity tree in Figure 9 contains three subtrees that are
isomorphic to the activity tree in Figure 6. Since different activity trees may have
different numbers of iterations of the subactivities, the activity is not uniform.
These considerations lead to the following translation definition:
(forall (?a)

(iff (Iterate ?a)
(forall (?occ)

(implies (occurrence_of ?occ ?a)
(and (repetitive ?occ)
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Figure 9. Example of an activity tree for an Iterate OWL-S activity.
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Figure 10. Example of activity trees for a RepeatUntil OWL-S activity.

(multiple_outcome ?occ)))))

A RepeatUntil process in OWL-S executes until some state condition becomes
true (see Figure 10). Because of this dependence on state, a RepeatUntil process
is equivalent to an Iterate process which is conditional:

(forall (?a)
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(iff (RepeatUntil ?a)
(and (conditional ?a)

(forall (?occ)
(implies (occurrence_of ?occ ?a)

(and (repetitive ?occ)
(multiple_outcome ?occ)))))))

Thus, there will exist multiple nonisomorphic activity trees (corresponding to
occurrences of the activity with different iterations), and activity trees that agree
on state will be isomorphic.

5. Grammars for Process Descriptions

PSL makes a distinction between the ontology (which is the lexicon together
with an axiomatization of their intended meaning) and the process descriptions
that are exchanged between software applications. For each class in the ontology,
PSL specifies a grammar that is satisfied by process descriptions of the activities
or activity occurrences in that class.

For example, if two software applications both used an ontology for algebraic
fields, they would not exchange new definitions, but rather they would exchange
sentences that expressed properties of elements in their models. For algebraic fields,
such sentences are equivalent to polynomials. Similarly, the software applications
that use PSL do not exchange arbitrary sentences, such as new axioms or even
conservative definitions, in the language of their ontology. Instead, they exchange
process descriptions, which are sentences that are satisfied by particular activities,
occurrences, states, or other objects.

OWL-S specifications are in fact grammars for service specifications. Using the
translation definitions proposed in the previous section, we can use the grammars
associated with the classes in the PSL Ontology to characterize the correctness and
completeness of the OWL-S specification for the corresponding OWL-S constructs.

There are several classes within the OWL-S Ontology that are classes of sentences
rather than classes of activities, activity occurrences, or fluents. In particular,
OWL-S has two classes of conditions, ConditionalEffects and UnconditionalEffects.
Within the PSL Ontology, this distinction is captured by the classes of context free
and markov effects activities. If one considers the PSL process description gram-
mars for a context free activity, conditions appear as a class of formulae, but they
are not a class in the ontology. Similarly comments apply to conditional activi-
ties. For example, in the process description for withdraw in the Appendix, the
condition is the formula
(and (prior (balance ?account ?Balance) (root_occ ?occ))

(greaterEq ?Balance ?amount))

6. Summary

Within the increasingly complex environments of enterprise integration, elec-
tronic commerce, and the Semantic Web, where process models are maintained in
different software applications, standards for the exchange of this information must
address not only the syntax but also the semantics of process concepts.

OWL-S is an attempt to support semantic web services within the framework
of the DARPA Agent MArkup Language. However, the intended semantics of the
concepts in OWL-S cannot be axiomatized within the Ontology Web Language,
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and the OWL-S ontology itself combines object level classes of concepts together
with metalevel classes of sentences.

The PSL Ontology draws upon well-known mathematical tools and techniques
to provide a robust semantic foundation for the representation of process infor-
mation. This foundation includes first-order theories for concepts together with
complete characterizations of the satisfiability and axiomatizability of the models
of these theories. The PSL Ontology also provides a justification of the taxonomy
of activities by classifying the models with respect to invariants. Finally, process
descriptions are formally characterized as syntactic classes of sentences that are
satisfied elements of the models.

The translation definitions presented in this paper are the first step towards lay-
ing firm logical foundations for semantic web services specified in OWL-S. Through
these definitions, OWL-S can be given a sound and complete axiomatization and
ontological distinctions can be clarified.
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Appendix: Examples of Process Descriptions

Consideer the following scenario:
To buy a product, pay a fee to the broker and the cost of the product to the seller,

performing these steps in parallel.
The PSL process description for buy product is:

(forall (?x ?y ?z) (subactivity (transfer ?x ?y ?z) (buy_product ?y)))
(forall (?x ?y ?z) (subactivity (withdraw ?x ?y) (transfer ?x ?y ?z)))
(forall (?x ?y ?z) (subactivity (deposit ?x ?z) (transfer ?x ?y ?z)))

(forall (?occ ?Buyer)
(implies (occurrence_of ?occ (buy_product ?Buyer))

(exists (?occ1 ?occ2 ?Fee ?Cost ?broker ?Seller)
(and (occurrence_of (transfer ?Fee ?Buyer ?Broker))

(occurrence_of (transfer ?Cost ?Buyer ?Seller))
(subactivity_occurrence ?occ1 ?occ)
(subactivity_occurrence ?occ2 ?occ)))))

To transfer money from Account1 to Account2, withdraw some amount from
Account1 and deposit the amount in Account2.

The PSL process description for transfer is:
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(forall (?occ)
(implies (occurrence_of ?occ (transfer ?Amount ?Account1 ?Account2))

(exists (?occ1 ?occ2 ?occ3)
(and (occurrence_of ?occ1 (withdraw ?Amount ?Account1))

(occurrence_of ?occ2 (deposit ?Amount ?Account2))
(subactivity_occurrence ?occ1 ?occ)
(subactivity_occurrence ?occ2 ?occ)
(leaf_occ ?occ3 ?occ1)
(min_precedes ?occ3 (root_occ ?occ2))))))

To withdraw money from an account, if the amount is greater than the balance,
then change the account balance, otherwise notify the account that there are insuf-
ficient funds available.

Suppose

(forall (?x ?y ?z) (activity (change_balance ?x ?y ?z)))

(subactivity (change_balance ?Account ?Balance1 ?Balance2)
(deposit ?Amount ?Account))

(subactivity (change_balance ?Account ?Balance1 ?Balance2)
(withdraw ?Amount ?Account))

(subactivity (notify ?Account)
(withdraw ?Amount ?Account))

In this case, deposit and withdraw are conditional activities, with the following
PSL process descriptions:

(forall (?occ)
(and (implies (and (occurrence_of ?occ (withdraw ?Amount ?Account))

(prior (balance ?account ?Balance) (root_occ ?occ))
(greaterEq ?Balance ?amount))

(exists (?occ1)
(and (occurrence_of ?occ1 (change_balance ?account ?Balance

(plus ?Balance ?Amount)))
(subactivity_occurrence ?occ1 ?occ))))

(implies (and (occurrence_of ?occ (withdraw ?Amount ?Account))
(prior (balance ?account ?Balance) (root_occ ?occ))
(lesser ?Balance ?amount))

(exists (?occ2)
(and (occurrence_of ?occ2 (notify ?Account))

(subactivity_occurrence ?occ2 ?occ)))))

The effects of change balance are:

(forall (?occ)
(implies (and (occurrence_of ?occ (change_balance ?Account ?Amount1 ?Amount2))

(leaf_occ ?occ1 ?occ))
(and (holds (balance ?Account ?Amount2))

(not (holds (balance ?Account ?Amount1))))))
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7. Methodology

(1) Translate OWL axiomatization of OWL-S into FOL.
(2) Characterize models of the OWL axiomatization up to isomorphism.
(3) Specify translation definitions of OWL-S into PSL.
(4) Characterize models of the translation definitions up to isomorphism.
(5) Prove that the translation definitions are an extension of the FOL axiom-

atization.
• Show that the FOL axiomatization is preserved by the translation def-

initions (that is, models of the FOL axiomatization are substructures
of models of the translation definitions).

(6) Demonstrate that the models of the translation definitions formalize the
intended interpretations of OWL-S concepts.

• Argue that the intended interpretation provided in the documentation
corresponds to the models of the translation definitions.

• Predictive models – argue that the models of process descriptions
correspond to possible behaviour sequences / execution traces of the
OWL-S processes (which are specified either by documentation or im-
plementation).

8. Classes of Composite Processes

OWL axioms (Section 5.4):
<owl:Class rdf:ID="CompositeProcess">

<rdfs:subClassOf rdf:resource="#Process"/>
<owl:disjointWith rdf:resource="#AtomicProcess"/>
<owl:disjointWith rdf:resource="#SimpleProcess"/>

<owl:Class rdf:ID="ControlConstruct">
</owl:Class>

First-Order Axioms:
(forall (?a)
(if (CompositeProcess ?a)
(Process ?a)))

(forall (?a)
(if (CompositeProcess ?a)
(not (AtomicProcess ?a))))

(forall (?a)
(if (CompositeProcess ?a)
(not (SimpleProcess ?a))))

PSL Translation Definitions:
(forall (?a)
(iff (Process ?a)
(activity ?a)))
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(forall (?a)
(iff (CompositeProcess ?a)
(and (activity ?a)
(not (atomic ?a)))))

(forall (?a)
(iff (ControlConstruct ?a)
(and (activity ?a)

9. Relations for Composite Processes

OWL axioms (Section 5.4):
<owl:ObjectProperty rdf:ID="composedOf">

<rdfs:domain rdf:resource="#CompositeProcess"/>
<rdfs:range rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="components">
<rdfs:domain rdf:resource="#ControlConstruct"/>

</owl:ObjectProperty>

First-Order Axioms:
(forall (?a1 ?a2)
(if (composedOf ?a1 ?a2)
(and (CompositeProcess ?a2)
(ControlConstruct ?a1))))

(forall (?a1 ?a2)
(if (component ?a1 ?a2)
(ControlConstruct ?a2)))

PSL Translation Definitions:
(forall (?a1 ?a2)
(iff (composedOf ?a1 ?a2)
(and (activity ?a1)
(activity ?a2)
(not (atomic ?a2))
(ControlConstruct ?a1)
(subactivity ?a1 ?a2))))

(forall (?a1 ?a2)
(iff (component ?a1 ?a2)
(and (ControlConstruct ?a2)
(subactivity ?a1 ?a2))))

10. Classes of Control Constructs

OWL Axioms for Control Constructs: (Section 5.4)
(forall (?a)
(if (Sequence ?a)
(ControlConstruct ?a)))
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(forall (?a)
(if (Split ?a)
(ControlConstruct ?a)))

(forall (?a)
(if (SplitJoin ?a)
(ControlConstruct ?a)))

(forall (?a)
(if (AnyOrder ?a)
(ControlConstruct ?a)))

(forall (?a)
(if (Choice ?a)
(ControlConstruct ?a)))

(forall (?a)
(if (IfThenElse ?a)
(ControlConstruct ?a)))

(forall (?a)
(if (Iterate ?a)
(ControlConstruct ?a)))

(forall (?a)
(if (RepeatWhile ?a)
(ControlConstruct ?a)))

(forall (?a)
(if (RepeatUntil ?a)
(ControlConstruct ?a)))

Translation Definitions

11. Performs

OWL Axioms
<owl:Class rdf:ID="Perform">

<rdfs:subClassOf rdf:resource="#ControlConstruct"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#process"/>
<owl:cardinality rdf:datatype="&xsd;#nonNegativeInteger">

1</owl:cardinality>
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="process">
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<rdfs:domain rdf:resource="#Perform"/>
<rdfs:range rdf:resource="#Process"/>

</owl:ObjectProperty>

First-Order Axioms

(forall (?a)
(if (Perform ?a)
(ControlConstruct ?a)))

(forall (?a1)
(if (Perform ?a1)
(exists (?a2)
(process ?a1 ?a2))))

(forall (?a1 ?a2)
(if (process ?a1 ?a2)
(and (Perform ?a1)
(Process ?a2))))

PSL Translation Definitions

(forall (?a)
(iff (Perform ?a)
(and (activity ?a)

12. Objections and Responses

(1) OWL-S (and UML) do not have constructs equivalent to PSL atomic activ-
ities; there are behaviours with no subactivities, but these don’t have the
semantics of PSL atomic activities.
(a) The translation definitions are an extension of the OWL-S axiomati-

zation.
(b) The properties of Atomic Process in the intended interpretation of

OWL-S are also satisfied by atomic activities in PSL.
(2) The translation definitions are not a conservative extension of the OWL-S

axiomatization.
(a) “Roundtrip” translations do not require nonconservative extensions.
(b) There exist theories within the PSL Ontology itself that are noncon-

servative extensions of other theories within the ontology.
(3) The translation definitions are mixing processes with control constructs.

Control constructs are not Processes in OWL-S; they are like statements
in a programming language that give the steps in the process, rather than
the process itself.
(a) Note: we need to justify the mapping of ControlConstruct to PSL

activities.
(b) Process descriptions are classes of sentences. On the other hand, Con-

trolConstruct is a class of objects, not a class of sentences, so Control-
Constructs do not correspond to process descriptions.

(c) Any composite process can be considered a tree whose nonterminal
nodes are labeled with control constructs, each of which has children
specified using components.
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The leaves of the tree are invocations of other processes, indicated as
instances of class Perform.
This is isomorphic to the substructure of the subactivity relation for
subactivities of a complex activity.

(4) Translation definitions map classes between ontologies – what happens
when there is no class explicitly defined in the ontology?
(a) Given a process description, we can entail the corresponding class of

activities, that is, we can classify the activity that is specified by the
process description.

13. Notes

Why should the translation definitions be a conservative extension of the OWL-S
axiomatization?
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