
ONTOLOGY DESIGN THROUGH MODULAR REPOSITORIES

Ali Hashemi, Michael Gruninger
Semantic Technologies Laboratory, University of Toronto, 5 King’s College Rd, Toronto, Canada

ali.hashemi+keod@utoronto.ca, gruninger@mie.utoronto.ca

Keywords: ontologies, ontology design, knowledge representation, knowledge engineering.

Abstract: Many real world problems require a language at least as expressive as first order logic, yet there exist many
barriers to the generation of first-order ontologies. One of the biggest hurdles is the specification of axioms that
capture the intended semantics of a users concepts. This paper presents an ontology design algorithm enabled
by modular ontology repositories that consist of theories organized into disjoint hierarchies, each of which is
a set of nonconservative extensions. The ontology design algorithm provides axiomatizations of relations by
eliciting intended models from the users, identifying the strongest theories in the repository that are satisfied
by the intended models, and incorporating user feedback to verify the proposed set of axioms. This approach
emphasizes the communication of semantics rather than syntax, allowing users to express intuitions about their
domains without extensive background in the intricacies of formal languages.

1 INTRODUCTION &
MOTIVATION

Many of the problems encountered in realistic appli-
cations require ontologies that are specified in a lan-
guage with at least first-order expressivity. Never-
theless, first-order logic poses significant hurdles for
many subject matter experts. Few have the adequate
training or familiarity in first-order logic to express
their ideas with facility in the language. The syn-
tax and grammar of most implementations of first-
order logic may often appear unintuitive and un-
wieldy. Compounding these barriers is also a paucity
of guidelines and tools to support the generation of
axioms; no best practices exist to help designers for-
mulate axioms. Moreover, once expressed, it may be
difficult to gauge the quality of the axioms.

Indeed, as Hou et al have noted, “research in clas-
sifying and representing axioms in a user-friendly
way has been relatively sparse in the knowledge-base
system community” (Hou et al., 2005). Several no-
table attempts have been made in this regard, both at-
tempting to develop patterns and templates for axiom
formulation based on existing ontologies (Hou et al.,
2005; Staab and Maedche, 2000). More recent work

has focused on identifying “design patterns” which
ontology designers may reuse (Presutti and Gangemi,
2008). Yet these works focuses on directly repre-
senting the axioms to user, for example by translating
logical axioms into English - i.e. ontologydesignpat-
terns.org. This work differs drastically as it focuses on
communicating with the ontology designer at the se-
mantic level. In many fields a domain expert might be
more comfortable specifying a relation via concrete
positive and negative examples.

A versatile ontology design algorithm has been
developed which allows ontology designers to cir-
cumvent the problem of becoming intimately famil-
iar with a first order logic language, instead allowing
them to focus on the semantics of what they wish to
represent. We do so by requiring only two things: (i)
that a domain expert be able to “draw” at least one
representation of a model for relation to be defined;
(ii) the subject matter expert must be able to recognize
whether models of existing ontologies are acceptable
manifestations of their relation. This algorithm is en-
abled by incorporating two simple principles in the
design of an ontology repository, allowing the repos-
itory to function as a “map” of known theories. The
algorithm then traverses the repository to deliver the

most appropriate axioms to the ontology designers.
The algorithm rests on the relationship between

a theory and its model (in the Tarskian sense). The
word modelas used throughout this paper, refers to
the set of objects in a domain of discourse which sat-
isfy the axioms. While in general, the correspondence
between a set of models and a set of axioms that are
satisfied by them are many to many, we address this
problem by exploiting properties of the accompany-
ing repository. This paper will begin by briefly de-
scribing the essential components driving the algo-
rithm, followed by the strategy employed to capitalize
the relation between syntax and semantics. Next, the
basic principles of the supporting ontology repository
will be provided, followed by the ontology design al-
gorithm and a sketch of its correctness proof. A brief
use case will provide a concrete example of the algo-
rithm in action.

2 MODELS AND LOGICAL
STRUCTURE

We consider a formal ontology as in the sense pro-
vided in (Guarino, 1998). Namely, an ontologyOk, is
a set of logical formulae in some languageL that aim
to capture the intended models of a particular concep-
tualizationC. A model for the ontology is constructed
via an interpretationI , assigning each element of the
vocabularyV to the extensional structure of the con-
ceptualizationS= {D,R} and thus to either elements
of the domainD or the conceptual relationsR (Guar-
ino, 1998).

The approach taken here is to bypass the syn-
tax and grammar of any particular formal language,
and instead let users specify concepts extensionally.
Particularly, if we focus our attention on the models
of any theory, we notice that they contain particular
structures. Take for example a Hasse diagram, which
is often used to represent models for partially ordered
sets. In these diagrams, nodes are taken to be ele-
ments from the domain of discourse,D and edges the
less-than-or-equal-to (leq) relation (fromR). These
models implicitly capture the axioms which gener-
ated them specifically, the way in which the edges
and nodes are constructed reflect the associated poset
axioms. While the mapping of nodes to say num-
bers, and edges toleq is done by an interpretation,
the resultant model structures exist independently of
the interpretation which assigned them to that partic-
ularS. Let us call this abstracted diagram a particular
model structure (in this paper, we use the termlogical
structureinterchangeably). for a theory. If we change
our domain of discourse, the axioms for posets could

equally well apply to a particular notion of time, or
some versions of mereology.

We exploit exactly this notion of model structure
to bypass the syntax of a formal language such as first-
order logic and allow ontology designers to specify
a particular relation via communication at the model
representation level alone. Of course, there exists
in general a many-to-many mapping between mod-
els and theories. Figuring out how to properly make
the transition from a set of models to the appropriate
theory is more involved. Once we start collecting and
growing the acceptable models, the number of candi-
date theories is reduced. Moreover, by keeping track
of those models which wedo not want, we identify
the unintended models. By collecting collect a coher-
ent set of models that we want, and a set of those we
dont want, in the limit we might reach a one-to-one
mapping between a theory and a set of models.

The above is the key to our algorithm we try to
find the best match between a theory in a given repos-
itory and the set of (in)admissable models as identi-
fied by an ontology designer. Since the set of intended
models,IM is not always immediately available, we
elicit a subset from the user,UM. As noted above, it is
not enough to jump fromUM to a theory,T. Further
interaction is required, in which the system provides
modelsSMof existing ontologies and the user identi-
fies as either admissible or not. In this way we may
be more confident in going from a set of models to a
theory. There are a number of further nuances to this
approach which will be elaborate d in the rest of the
paper.

3 REPOSITORY

Underlying the design algorithm of course is a modu-
lar ontology repository this where candidate theories
are selected from (Luettich and Mossakowski, 2004).
Any repository satisfying the two basic principles dis-
cussed later in this section, allows a successful imple-
mentation of the algorithm (guarantee its correctness
proof). For ease of understanding and concreteness,
in this paper we present a particular repository design
using the Common Logic Interchange Format (CLIF)
(Delugach, 2007).

Any such repository should extend along two di-
mensions: one which we call Abstraction Layers and
the other Core Hierarchies. Abstraction layers serve to
significantly reduce conceptual clutter and help better
delineate the types of theories being discussed more-
over they are essential in helping satisfy the second
repository design criterion. Core Hierarchies gather
theories as a map which the algorithm traverses.

3.1 Abstraction Layers

The repository serves as a sort of inverted upper on-
tology, since users are plugging in, not necessarily to
reuse concepts such as time and space, but to reuse
the model structures of logical theories. In our exam-
ple repository, we decided that mathematical theories
corresponded to the lowest level of abstraction.

Theories formalizing the notions of orderings,
groups, fields, geometries characterize a large family
of logical and model structures that recur frequently.
These theories form our base abstraction layer. Our
next Abstraction Layer consists of theories from the
traditional domain of upper ontologies - formaliz-
ing notions such as Space, Time, Mereotopology etc.
Note that many of these concepts actually reuse logi-
cal structures from the base mathematical layer. Mov-
ing upwards thusly, we add layers which characterize
more and more specialized concepts (say agents, or
processes etc.)

The layers are connected to one another either via
representation theorems or mapping axioms. Discus-
sion of these links are outside the scope of this paper.
For the purposes of the algorithm, it suffices to say
that a repository ought be organized via some sort of
abstraction layers, as each abstraction layer consists
of a number of Core Hierarchies, which drive the de-
sign process.

3.2 Core Hierarchies

As noted above, each layer is populated by a num-
ber of Core Hierarchies. A Core Hierarchy is a col-
lection of modules (theories or set of axioms), which
non-conservatively extend a conceptual domain. For
example, the notion of a partial order may be non-
conservatively extended in numerous ways from poset
(one module) to lattice (another module) to Boolean
lattice (yet another module). Of course, a repository
may consist of more than one core hierarchy - thus our
Abstraction Layer for mathematical theories consist
of hierarchies for posets, geometries, groups, symme-
tries, fields etc.

The stipulation here that any compliant repository
must satisfy is that no Core Hierarchies at the same
level of abstraction may share a non-conservative ex-
tension with one another. If there exists a mod-
ule within an abstraction layer which is a non-
conservative extension of two hierarchies, then it sug-
gests that the two hierarchies should in fact be com-
bined as one.

In comparing two theories or modules in a core
hierarchy from the repository, we may also say that
one isstrongerthan another as follows. Given module

A and B, if A is a non-conservative extension of B,
then A is stronger than B by virtue of the fact that
more theorems may be proven.

To recap, there were two requirements for any
repository (modularity is taken as a given). First,
modules should be linked in such a way as to form
a Core Hierarchy, with the caveat of no share non-
conservative extensions at the same abstraction level.
Following from this restriction, is that the repository
should incorporate the notion of abstraction layer (the
specific ordering of layers is left to the repository de-
signer).

4 ALGORITHM

Now that the basic reference point from which theo-
ries will be selected has been exposited, we shall de-
scribe how such a repository may be leveraged. The
algorithm consists of two parts, (i) elicitation of user
models and (ii) the proposal of models for existing
ontologies (see Figure 1.

The first component locates the user somewhere in
the repository, providing “bounds” for theories which
characterize the user’s intended models. Models ex-
isting ontologies, coupled with user responses, tighten
this bound, selecting the strongest (if any) theories
from the repository which capture the user’s intuition.
The following sections will elaborate each compo-
nent.

4.1 Elicitation of User Models

Acquiring user models necessitates that there exist a
suitable representation for models of the concept or
relation under consideration. Such a representation is
not always obvious or available. However, any repre-
sentation of a model is suitable so long as we are able
to unambiguously and repeatedly generate a complete
diagram (the set of all positive and negative literals)
from the depiction. Consider again a Hasse diagram
- there are certain conventions for interpreting the di-
agram - namely that edges are transitive, and ordered
spatially. So long as these conventions are explic-
itly communicated and understood, we may always
generate the same complete diagram from a particu-
lar Hasse diagram, as in Figure 5.

The elicitation of models need not be restricted to
Hasse diagrams, indeed changing the conventions of
graph depictions might allow one to specify a model
for a non-transitive relation. Alternatively, an audi-
tory or tactile model depiction may be more natu-
ral for certain domains. For our proof of concept,
we developed a simple piece of software allowing a

user to specify binary relations using graphs. Users
could also explicitly modify conventions for convert-
ing graphs into complete diagrams. Once a complete
diagram for a model is generated, we identify which
theories the model satisfies. In this way, we locate the
initial candidate theories which may characterize the
user’s intended models.

4.2 Initializing in the Repository

To begin the algorithm, we require at least one (or
more) user model, which is independently tested
against theories in a single core hierarchy via a
breadth-first specialization search1. We begin with
the most general module, see if it is satisfied by the
model, then move on to its children. If a particular
theory is not satisfied, then it and all its children are
pruned from the search tree. Moreover, since the hier-
archies share no non-conservative extensions, we may
explore them independently. We make use of an au-
tomated theorem prover or a satisfiability checker to
verify that the models satisfy the theories.

We may then compare the theories which were
satisfied by each user model. If no core-hierarchy
had at least one theory which was satisfied by all
user models, then the algorithm terminates - either the
user is trying to formalize inconsistent models, or the
repository has insufficient breadth. On the other hand,
if there is at least one module insomecore hierarchy
which is satisfied by all models, then we may proceed
to the second phase of the algorithm. We present here
the algorithm in parts while the steps are distributed
through the text, they comprise a single algorithm.

The steps above first collect all the mod-
ules in hierarchy j satisfied by user model i in
ConsistentUMi, j . We take its intersection and rid all
the parents to yield the strongest theories in hierar-
chy j that are consistent with all the user models in
Consistentj . This set serves as the lower bound of
candidate theories, the upper bound is simply the root
of the hierarchy. We have thus located the user in the
repository and passed the initiative to the software.

One problem with trying to derive an underlying
theory by examining extensional models is that the
models might exhibit accidental properties. For ex-
ample, if asked to draw atriangle, many will inad-
vertently draw an equilateral or isosceles triangle. To
account for this condition, we must explore more gen-
eral theories and see if a model of them is acceptable

1We will use the following terminology:CHm, j denotes
module m in hierarchy j,UMi denotes user model i,AboveK
is the set of all modules connected to and directly above
theoryK, andBelowK is the set of all modules connected to
and directly below theoryK

Inputs:

• At least one user generated model that is inter-
pretable by the ontology design tool.

• Yes or no answers by the user to the models se-
lected by the design tool

Outputs: The set of strongest axioms with respect
to the repository that is consistent with the users un-
derstanding as determined by the sets of accepted and
rejected models.

1. Elicit-Models

2. Select-Models

Figure 1: The AlgorithmAxiom-Generation

1. LetUM = UMi the set of all models generated by
user

2. Breadth-First Specialization Search: If CHm, j
is satisfied by UMi , then add CHm, j to
ConsistentUMi, j .

3. Termination Condition:

(a) If for anyUMi everyConsistentUMi is empty,
thenEnd Algorithm.

(b) If for any j, the intersection of all
ConsistentUMi, j is empty, then End Al-
gorithm .

4. Initialize: Let Consistentj =T
j ConsistentUMi, j

5. Rid Parents: For every elementCHm, j ∈
Consistentj if its child is in Consistentj then re-
moveCHm, j from Consistentj

Figure 2: The AlgorithmElicit-Models

to the user. If so, then the weaker theory is appropri-
ate.

4.3 Select Models

Once user models have been mapped to the hierar-
chy, there are two scenarios: either there is a unique
lower bound or there are multiple candidate theories.
If unique, the algorithm proceeds to theGeneralize
step in Figure?? below. If not, the algorithm takes
the join of the strongest theories,T0, selects a model
for it and presents it to the user. If the user finds the
model acceptable, we proceed again toGeneralize. If
not, the algorithm constructs all possible chains from

each strongest theory toT0.

Figure 3: The relation between modules (theories) and their
associated sets of models. Moving rightwards, we have
non-conservative extensions.

In this case, we know that the theories the user de-
sires are bounded byT0above andConsistentj below.
We traverse each chain from the most general theo-
ries (top down) showing models for each module. If
accepted, we terminate exploration of that chain and
storeTtest in Proposedj . Otherwise, we iteratively re-
move the top element till there is only one element left
in the chain. At this point, we test if the union of the
selected models in each chain is consistent. If so, we
have developed the strongest axioms from this hierar-
chy for the user, otherwise the algorithm terminates.
We then move to the component of the algorithm for
combining results from the various hierarchies.

If the resultant theories are not mutually consis-
tent, the algorithm terminates. The reason for this
apparent inconsistency in the user responses may be
that the user is trying to define a relation over multiple
sorts simultaneously. Alternatively, they may desire a
theory not in the repository. Since these cases cannot
be disambiguated, the algorithm simply exits.

In the case whereConsistenj consisted of a unique
theory in a core hierarchy, then instead of the chain
method, we look directly at the theories above and
below the initialized theory. The hierarchy functions
as a map which the algorithm navigates, propelled by
user responses to proposed models. Imagine the user
is situated atT0 with models above and below as in
Figure 3, then the following algorithm applies. To en-
sure thatT0 is the desired theory, we must exhaust the
search space by constructing models for those above
and combinations of those below. As before, to ac-
count for inadvertent properties in the set of user mod-
els, we need to test the weaker theories. We may do
this by negatingT0 and constructing a model for each
TAi. If any of these models are accepted, we know that
a more general theory is required, and we resetT0 to
one of those above.

If we can no longer generalize, then we look to

prune those belowT0. We may construct as many
models corresponding to those areas inMTo above. In
this case, we learn through rejection. If these mod-
els are accepted, then the proposed axioms do not
change. A rejection however, results in the addition
of ¬TBi to the proposed axioms. In this process, as
illustrated in the steps below, we may ensure that the
strongest axioms from core hierarchy j are selected.
These steps are reflected in Figure 4.

Up to theCombine Hierarchies steps, we have
selected the strongest theories for the user’s intended
models from a single hierarchy. Of course, it may
have been the case that the user models satisfied the-
ories in more than one hierarchy. The algorithm up to
this point repeats for each core hierarchy which had
at least one theory which were satisfied by all the user
models, now we must combine the results.

For each core hierarchy j, which provided full
cover the user models, we now have the setH0, j which
are the strongest theories. We recall that our initial
stipulation was that each Core Hierarchy not share
a non-conservative extension with another. Conse-
quently, we need only check if the union of allH0, j
is consistent. If so, we have determined the strongest
axioms in the repository that are consistent with all
user models, all those denoted accepted and inconsis-
tent which those marked reject. Otherwise, the algo-
rithm terminates due to possibly conflicting inputs by
the user.

4.4 Theorem and Correctness Proof

Given user inputs and a modular repository, the cor-
rectness of the algorithm is characterized by the fol-
lowing theorem:

Theorem 1 The algorithmAxiom-Generationgener-
ates a set of the strongest theories H0 that satisfy the
following properties:

1. H0 is a composite of the theories from the ontology
repository

2. H0 is consistent with all user generated models.
3. H0 is consistent with all selected models that the

user denoted Accept
4. H0 is inconsistent with all selected models that the

user denoted Reject

The full correctness is too long for this paper, here
we only provide a sketch. We first need to prove four
lemmata, the first (lemma 1) showing that the algo-
rithm applies i.e. ensuring that there is at least one
theorem in some core hierarchy that satisfies all the
user models. If such a theory exists, then the algo-
rithm may continue, otherwise it terminates as shown
in Figure ?? above. Lemma 2 establishes that for

1. For every hierarchy, where|Consistentj | > 0

2. If |Consistentj | > 1 and user rejectsMTo (where
MTo is a model selected forT0 =

W
(CHm, j ∈

Consistentj))

(a) Construct all chains, Chain(T0, A), whereA ∈
Consistentj

(b) For each chain, createMTtop for Ttop (top of
chain k)

i. If MTtop is accepted,MTtop ∈ Acceptj , end
chain, addTtop to Proposej

ii. If MTtop is rejected,MTtop∈ Re jectj , remove
top element of chain,Ttop is now new top ele-
ment of chain. If top=bottom, end chain, add
Ttop to Proposej

(c) If no more chains
i. If Proposej is not consistentEnd Algorithm

ii. If Proposej is consistent, check next hierar-
chy, otherwise, gotoCombine Hierarchies

Generalize

3. SetT0 = Consistentj

4. For eachAp ∈ AboveTo, Construct MAp from
Ap

S
¬BelowAp

(a) If MAp is rejected, then removeAp from
AboveTo andMAp ∈ Re jectj

(b) If MAp is accepted, thenMAp ∈ Acceptj and set
T0 = Ap, generate newAboveTo

Specialize

5. ConstructMTo∗ from T0∗ = T0
S
¬BelowTo

(a) If accepted,MTo∗ ∈ Acceptj
(b) If rejected, MTo∗ ∈ Belowj and Proposej =

BelowTo

6. For everyBp ∈ BelowTo ConstructMBp∗ where
Bp∗ = Bp

S
¬(BelowTo/Bp)

(a) If accepted,MBp∗ ∈ Acceptj try nextBp

(b) If rejected, MBp∗ ∈ Re jectj , add ¬Bp to
Proposej

7. H0, j =
S

Proposej

8. Combine Hierarchies

(a) LetCombine=
S

j H0, j

(b) If Combine is consistent, then display: The
strongest set of axioms from the repository
which correspond to your inputs areCombine
End Algorithm

(c) Else there is no set of axioms in the repository.

Figure 4: The AlgorithmGeneralize-Models

each core hierarchy, the algorithm initializes at the
strongest theories which are satisfied byall the user
models. Briefly, using lemma 1, we can show this is
achieved by theRid Parentssub process.

Lemma 3 shows that for each investigable core hi-
erarchy, we may attain a set of theoriesH0, j which are
the strongest theories in that hierarchy that are consis-
tent with all the elements ofAcceptj and inconsistent
with all elements ofRe jectj . Finally, lemma 4 ensures
that the setCombineis the union of the strongest theo-
ries from the repository that are consistent withevery
Acceptj and inconsistent with everyRe jectj .

With these lemmata, we may prove the correctness
theorem, since by lemma 1 we know the algorithm
engages only if there is a hierarchy in the repository
which satisfies all the user models (hence satisfying
property 1 and 2). Lemma 2 shows that we can always
select the strongest theories in a core hierarchy, while
lemma 3 shows that these theories will be consistent
with Acceptj and inconsistent withRe jectj . Finally,
lemma 4 shows that we may extend this result to all
Accept and Reject sets, otherwise the algorithm ter-
minates. Combining these results satisfies the final
two properties of the theorem.

5 USE CASE

In this section we will briefly show how this algo-
rithm would apply for a real world concept. We take
as given the existence of an ontology for partially or-
dered sets organized as a core hierarchy. We aim to
add axioms to theflowsrelation from SUMO, which
aside from categorization axioms, only asserts the
anti-symmetry and transitivity of that binary relation
(Nichols, 2004).

User models have been constructed by looking at
a map and selecting rivers as nodes and edges as the
flows relation. Figure 5 illustrates two such depic-
tions of models for flows. Each of these models is
converted into a complete diagram and tested against
the poset hierarchy to see which theories are satisfied
by them.

Axioms for posets, comparability graphs, down
forests and down trees are all satisfied by these mod-
els. However we initialize only at down tree since all
the other theories have children inConsistentj . Since
we have a unique theory as the current lower bound,
we do not invoke the chain investigation and instead
try to generalize then specialize.

In this case, Abovedowntree = {Down Forest,
Bounded Meet Semi Lattice}. The algorithm selects a
model for each that isnota down tree. The first model
proposed is a series of down trees (a down forest). As

Figure 5: Hasse diagram conventions for two user models.
Nodes are names of rivers, edges are the flows relation.

I am acting as the user in this case, my understanding
is that most uses of flow have every river or body of
water flowing into a unique body of water (this is not
always necessarily so, but for the purposes of this use
case, we make this claim). Hence, I reject this model.

The next model is that of a bounded meet semi
lattice that is not a down tree (i.e. a child may have
more than one parent). This seems acceptable since
rivers may bifurcate then join up again, so I accept
it. The algorithm now has a newT0, namely, bounded
meet semi lattice. We create a newAboveTo = poset
in this case and again, we the present the user with a
model for a poset which is not a bounded meet semi
lattice. This model is rejected because it admits rivers
ultimately flowing into more than one body of water.

Figure 6: Several software proposed models. (a) uniquely a
bounded meet semi lattice. (b) down tree. (c) bounded meet
semi lattice that is not a down tree.

We now try to Prune Specialize by investigating
BelowTo = {Down Tree, Meet Semi Distributive Lat-
tice, Meet Pseudo-complemented Lattice, Meet Semi
Modular Lattice}. The first model presented is thus a
uniquely bounded meet semi lattice that does not ex-
hibit the properties of any of its children. This seems
plausible so I click accept. Next, the algorithm selects

a model which satisfies each element ofBelowTo ex-
clusively. Every model seems like a potential models
of rivers flowing into one another, so I click accept to
each and they are all added toAcceptj . As there are
no other combinations to try, nor other core hierar-
chies to investigate, we haveH0 = H0, j = Proposej =
Bounded-Meet-Semi-Lattice andAcceptj is the set
of all the user models plus those I accepted, while
Re jectj is the set of all the rejected models. We note
that the axioms for bounded meet semi lattice were
satisfied by all the models inAcceptj and not by those
in Re jectj . Thus we have provided axioms forflows
by reusing axioms forleqas constrained by theory for
bounded meet semi lattices.

6 DISCUSSION

In this paper we have presented two basic design prin-
ciples for any ontology repository which enables an
ontology design algorithm. The algorithm uses the
repository as a map of theories through which it navi-
gates to identify the most appropriate characterization
of the user’s intended models.

It relies on the structure of the repository and the
nature of non-conservative extensions. User models
initialize the algorithm within one or more core hier-
archies in a single abstraction layer. The algorithm
then tries to determine whether there were acciden-
tal properties in the user models by exploring weaker,
more general theories. It does so by proposing mod-
els which do not exhibit the stronger qualities. Once
these have been exhausted, the algorithm attempts to
identify the strongest possible theories, by exploring
the set of modules below the selected theory. The al-
gorithm uses falsification to drive its navigation of the
repository. It selects models based on the interesting
areas as shown in Figure 3. Each region in the model
space is an interesting one which is accounted for and
tested by the algorithm.

In its current guise, the algorithm only formalizes
one relation at a time. A Sandbox Tool has been de-
veloped for graphs, which allows users to depict mod-
els for binary relations while explicitly specifying the
translation conventions. Again, given adequate speci-
fication, a non-alpha numeric representation may be
converted into a complete diagram for a model, in
any sensory arrangement. The only restriction is that
such depictions must have a clear, unambiguous and
repeatable translation into complete diagrams. This
process is suited for relations with arity of 2-5, any
higher and it becomes difficult to find a suitable repre-
sentation for the models. Some relations with higher
valence may be projected into a smaller dimension

given a contextual framing.
The precision and accuracy of the proposed ax-

ioms of the algorithm are dependent on the breadth
and depth of the reference repository. There may al-
ways be some additional axioms which the designer
wishes but not present in the repository. While the
algorithm is necessarily silent about these axioms,
should they be formalized, the repository can grow
to accommodate these novel learnings.

The algorithm relies on a theorem prover and/or
satisfiability checker to verify that a particular model
indeed satisfies the axioms of an ontology. It is im-
portant to realize that the algorithm is not dynami-
cally constructing new models of the axioms (which
in general is undecidable). Since the repository is a
static entity and we know which theories are above
and below any other theory, we can assume that all
necessary models have been constructeda priori. We
need only convert the diagrams into the desired repre-
sentation convention on the fly.

7 CONCLUSION

The work presented here only scratches the surface of
a novel way of axiom generation - that of conversing
at the semantic level. It greatly reduces the burden on
subject matter experts to intimately learn a formal lan-
guage. Moreover, it skirts many of the issues of Up-
per Ontologies by not taking positions on the nature
of reality, but by capturing the logical structures that
underlie many concepts. Consequently, user concepts
do not necessarily map into particular conceptualiza-
tions of space and time, but rather the more abstract
concepts of properties of binary relations.

Moreover, as interrelations between layers of ab-
stractions become formalized, more natural model
representations might also be used. For example
a molecular biologist might be able to draw mod-
els based on actual molecules instead of abstracted
graphs. Similar to how users can customizeskinsfor
software graphical user interfaces, model representa-
tions may beskinned, so as to reflect a representation
more natural to a subject matter expert’s domain (i.e.
a molecular biologist might look at spatial configura-
tions of molecules.)

Closely related, are questions of representing high
arity relations, or models of infinite size? Contexts
and/or project may address the former, while ellipses
and/or navigable fractals may be promising depic-
tions. Explicit conventions would mitigate some of
these issues, but these ideas are preliminary at the mo-
ment.

Similarly, we currently axiomatize structures that

are isomorphic to the extensions of a single relation.
Extending this work to multiple relations presents an
interesting challenge. How does the interaction of re-
lations affect which models to propose?

Lastly, an extension to the repository would see
it retain the relation names when a user engages the
algorithm to axiomatize a relation. In this way, we
might be able to enrich the user browse experience by
presenting different, previously user defined notions
of say,time. One could then comparetimeas defined
by A vs. B and see whether either of those definitions
corresponds to thetimethey wish to axiomatize.

In this paper we have shown how the organiza-
tion of theories within an ontology repository can be
exploited to provide an axiomatization of a class of
models. Furthermore, such a repository structure pro-
vides the foundation for many other applications in
ontological engineering. One such example is an al-
gorithm for the generation of semantic mappings for
ontologies consistent with those in the repository - the
repository serves as a central family of interlingua on-
tologies through which alignment may be achieved.

REFERENCES

Delugach, H. (2007). Common logic (cl) - a framework for
a family of logic-based languages. Technical report,
Geneva.

Guarino, N. (1998). Formal ontologies and information sys-
tems. InFormal Ontology in Information Systems.
Proceedings of FOIS’98, pages 3–15. IOS Press.

Hou, C. J., Musen, M., and Noy, N. F. (May 2005). Ez-
pal: environment for composing constraint axioms
by instantiating templates.International Journal of
Human-Computer Studies, 62:578 596.

Luettich, K. and Mossakowski, T. (2004). Specification of
ontologies in casl. InFormal Ontology in Informa-
tion Systems Proceedings of the Third International
Conference (FOIS-2004), pages 140–150. IOS Press.

Nichols, D. (2004). Ontology of geography.
http://sigmakee.cvs.sourceforge.net/*checkout*/sigmakee/KBs/Geography.kif.

Presutti, V. and Gangemi, A. (2008). Content ontology de-
sign patterns as practical building blocks for web on-
tologies. In27th International Conference on Con-
ceptual Modeling, pages 128–141. Springer.

Staab, S. and Maedche, A. (2000). Ontology engineer-
ing beyond the modeling of concepts and relations.
In 14th European Conference on Artificial Intelli-
gence; Workshop on Applications of Ontologies and
Problem-Solving Methods.

