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Abstract. Many software systems rely on ontologies for semantic interoperation.
However, ontologies which admit unintended models might cause misunderstand-
ings that hinder interoperability because their vocabularies are ambiguously de-
fined. Foundational ontologies, such as SUMO, provide rich characterizations for
general concepts that underly every knowledge representation enterprise. Those on-
tologies are intended to be broadly reused as a reference for semantics. Ontology
verification is the process by which a theory is checked to rule out unintended mod-
els by means of further axiomatization, and characterize missing intended ones. In
this paper, we verify the subtheory of core temporal concepts of the SUMO founda-
tional ontology and relate its axiomatization via ontology mapping with other time
ontologies, the foundational ontology DOLCE, and the generic ontology PSL. As
a result, we propose the addition of some missing axioms that we have identified
during our verification task, and the correction of others.

Keywords. ontology verification, ontology mapping, SUMO ontology, DOLCE
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1. Introduction

Automatic applications appealing to ontologies for interoperation are unambiguously in-
tegrated only when the models of their shared features are equivalent. However, ontolo-
gies admitting unintended models ambiguously characterize their vocabularies, which
can generate misunderstandings that hinder interoperability.

Foundational ontologies, also called upper ontologies, characterize the semantics of
general concepts that underlay every knowledge representation enterprise. They can be
used as oracles for meaning in ontology reconciliation [3], or as the foundational substra-
tum on which new ontologies are developed. Since foundational ontologies are expected
to be broadly reused, verifying that they do not have unintended models which can be
ruled out with further axiomatization, and that they are not missing intended models, are
of paramount interest for the ontology and knowledge representation communities.

Ontology verification is the process by which a theory is checked to rule out its
unintended models by means of further axiomatization, and characterize any intended
ones which might be missing. In this paper, we apply the definition of ontology veri-
fication based on representation theorems that was introduced in [7], which applies to
the verification of ontologies axiomatized in first-order logic. It is particularly important
to understand the models of upper ontologies. First, it allows us to formally specify the



relationships to other upper ontologies, and determine the similarities and differences
among them. Second, a characterization of the models of an upper ontology enables us
to make the ontological commitments of an upper ontology explicit. Ontology designers
that create new domain-specific ontologies by extension of the upper ontology can then
be aware of the ontologies that they are using.

After a short review of SUMO [15], we begin the analysis of the axiomatization
of its core temporal concepts, which we call SUMO Time. The axioms of SUMO Time
are divided into three subsets, Tsumo timepoints, Tsumo timeintervals, and Tsumo temporalPart,
which are explored in the subsequent sections. We show that SUMO Time admits unin-
tended models and then identify missing axioms which can eliminate these models. After
proposing new axioms to extend the original ontology, we demonstrate the verification of
the new axioms, and then apply these results to formally prove the relationships between
SUMO Time and other generic ontologies. We have used theorem prover Prover9 [13],
and model finder Mace4 in the proofs of all of our results.

Although we provide a characterization of the models of SUMO Time, and we iden-
tify several unintended models of the ontology, we are restricting ourselves in this pa-
per to a logical analysis. We are not debating any philosophical stance implicit in the
ontological commitments of a time ontology.

2. The SUMO Foundational Ontology

SUMO [15] is an open source formal foundational ontology axiomatizing, among oth-
ers, general concepts such as those needed to represent temporal and spatial location,
units of measure, objects and processes. As a foundational ontology, it is expected to
be used as a global reference for semantics, and its axiomatization reused in the con-
struction of domain and application ontologies for automated reasoning in expressive
languages. In addition to the main ontology, which contains about 4000 axioms, SUMO
has been extended with a mid-level ontology and a number of domain specific ontolo-
gies, all of which account for 20,000 terms and 70,000 axioms in areas such as finance,
investment, terrain modeling, distributed computing, and biological viruses. SUMO has
been translated into the OWL [11] semantic web language, and has also been mapped to
the WordNet lexicon of approximately 100,000 nouns [4] [14], which facilitates the use
of the SUMO axiomatization for natural language understanding tasks. We focus on the
core axioms of the TEMPORAL subtheory covering the complete axiomatization of time
through intervals and points, which we call SUMO Time, leaving untouched those axioms
concerning other related topics such as dates, measures, durations, and the occurrence of
physical entities in time. We plan to study those subtheories in a future work.

The representational language of SUMO is SUO-KIF1 [18], a dialect of KIF [5].
SUO-KIF is a very expressive language with many-sorted features, whose syntax per-
mits higher-order constructions such as the use of predicates having other predicates, or
formulas, as their arguments, and the existence of predicates and functions of variable
arity [1]. Mapping axioms from SUO-KIF to conventional first-order logic syntax (for
use by theorem provers such as Prover9) requires that we pay close attention to several
key features. First, some properties of functions and predicates are characterized by sec-

1http://suo.ieee.org/SUO/KIF/suo-kif.html



ond order formulae; for example (instance before TransitiveRelation) leads
to the transitivity for before (see Axiom (3) in Table 1). Second, SUO-KIF uses a rather
idiosyncratic approach to order sorted logics [16] where domain and range constructs
denote sorts. For example,

(domain before 1 TimePoint)

(domain before 2 TimePoint)

indicates that the first and second arguments of predicate before must be individuals of
the extension of predicate TimePoint. We will refer to SUMO Time as the set of SUMO
axioms translated into conventional first-order logic syntax2. The resulting axioms have
been also rewritten using Common Logic.3

3. Time Points

We first consider Tsumo timepoints,4 the subset of the axioms from SUMO Time that spec-
ify an ordering over time points using the before relation, given by the axioms shown
in Tables 1 and 2 respectively. In this section, we identify two unintended models of
Tsumo timepoints, and then propose an extension that eliminates these models.

3.1. Endpoints at Infinity

A distinctive feature of Tsumo timepoints is that there exist two distinguished time points
NegativeInfinity (which is before all other time points) and PositiveInfinity (which is after
all other time points). All other time points are between NegativeInfinity and PositiveIn-
finity, and intuitively, there should only exist infinite models of these axioms. However,
we have the following:

Proposition 1 Tsumo timepoints 6|= (NegativeIn f inity 6= PositiveIn f inity)

Proof: Using Mace4, we can construct a model5 of SUMO Time in which NegativeIn-
finity = PositiveInfinity. 2

Note that in the model that satisfies NegativeInfinity = PositiveInfinity there is only
one time point. This is admittedly an unusual model, and one may dismiss it as nothing
more than a curiosity. Nevertheless, it also means that the axioms do not entail that
NegativeInfinity is before PositiveInfinity, which is quite a fundamental intuition about
these two distinguished timepoints.

Interestingly, this issue also appears in other generic ontologies that use the notion
of a timeline with points at infinity. In particular, PSL-Core6 [6] contains a subtheory of
time that axiomatizes a linearly ordered set of timepoints with a distinguished timepoint
infneg which is before all other timepoints and a distinguished timepoint infpos which is

2colore.oor.net/sumo/theorems/input/sumo_time.in
3colore.oor.net/sumo/sumo_time.clif
4colore.oor.net/sumo/sumo_timepoints
5colore.oor.net/sumo/theorems/output/ex128-1.model
6colore.oor.net/psl_core/psl_core.clif

colore.oor.net/sumo/theorems/input/sumo_time.in
colore.oor.net/sumo/sumo_time.clif
colore.oor.net/sumo/sumo_timepoints
colore.oor.net/sumo/theorems/output/ex128-1.model
colore.oor.net/psl_core/psl_core.clif


Table 1. Theory Tsumo timepoints

(∀x,y)be f ore(x,y)→ TimePoint(x)∧TimePoint(y) (1)

(∀x)TimePoint(x)→¬be f ore(x,x) (2)

(∀x,y,z)be f ore(x,y)∧be f ore(y,z)→ be f ore(x,z) (3)

TimePoint(PositiveIn f inity) (4)

TimePoint(NegativeIn f inity) (5)

(∀x)TimePoint(x)∧¬(x = PositiveIn f inity)→ be f ore(x,PositiveIn f inity) (6)

(∀x)TimePoint(x)∧¬(x = PositiveIn f inity)→

∃y(TimePoint(y)∧ temporallyBetween(x,y,PositiveIn f inity)) (7)

(∀x)TimePoint(x)∧¬(x = NegativeIn f inity)→ be f ore(NegativeIn f inity,x) (8)

(∀x)TimePoint(x)∧¬(x = NegativeIn f inity)→

∃y(TimePoint(y)∧ temporallyBetween(NegativeIn f inity,y,x)) (9)

(∀x,y,z)temporallyBetween(x,y,z)↔ be f ore(x,y)∧be f ore(y,z) (10)

(∀x,y,z)temporallyBetweenOrEqual(x,y,z)↔

be f oreOrEqual(x,y)∧be f oreOrEqual(y,z) (11)

after all other timepoints, yet Tpslcore6|= (infneg 6= infpos). Similarly, the time ontology
with endpoints at infinity Tlp endpoints7 [10] also admits a finite model in which there is a
unique timepoint.

To eliminate such an unintended model, we propose the additional Axiom (21) (see
Table 3). Analogous axioms can be added to ontologies PSL-Core and Tlp endpoints. Al-
though it is actually equivalent to NegativeIn f inity 6= PositiveIn f inity, it makes evident
the relationship that NegativeIn f inity and PositiveIn f inity are opposite timepoints along
the timeline.

3.2. Linear Orderings on Time Points

If we consider other time ontologies that contain endpoints at infinity, we see that they
also satisfy one additional property – the set of timepoints is linearly ordered by the be-
fore relation. On the other hand, SUMO Time does not entail the sentence that axioma-
tizes this property:

7colore.oor.net/timepoints/lp_endpoints.clif

colore.oor.net/timepoints/lp_endpoints.clif


Table 2. Theory Tsumo timepoints

(∀x,y)be f oreOrEqual(x,y)→ TimePoint(x)∧TimePoint(y) (12)

(∀x)TimePoint(x)→ be f oreOrEqual(x,x) (13)

(∀x,y)be f oreOrEqual(x,y)∧be f oreOrEqual(y,x)→ (x = y) (14)

(∀x,y,z)be f oreOrEqual(x,y)∧be f oreOrEqual(y,z)→ be f oreOrEqual(x,z) (15)

(∀x,y)be f oreOrEqual(x,y)→ be f ore(x,y)∨ (x = y) (16)

(∀x,y)be f ore(x,y)→ be f oreOrEqual(x,y) (17)

(∀x,y,z)temporallyBetween(x,y,z)→ TimePoint(x)∧TimePoint(y)∧TimePoint(z) (18)

(∀x,y,z)temporallyBetween(x,y,z)→ temporallyBetweenOrEqual(x,y,z) (19)

(∀x,y,z)temporallyBetweenOrEqual(x,y,z)→

TimePoint(x)∧TimePoint(y)∧TimePoint(z) (20)

Proposition 2 Tsumo timepoints 6|= (∀t1, t2)TimePoint(t1)∧TimePoint(t2)→
(be f ore(t1, t2)∨be f ore(t2, t1)∨ (t1 = t2)

Proof: Let Tfinite sumo timepoints be the subtheory of Tsumo timepoints without the axioms
that force the existence of infinite sets of time points (e.g. Axioms (7) and (9)).
Using Mace4,8 we can construct a model of Tfinite sumo timepoints that contains two
timepoints t0 and t1 incomparable by the before relation (and hence falsifies the
sentence). This model can be extended to construct a model of Tsumo timepoints that
also falsifies the sentence by adding linearly ordered sets of timepoints between
NegativeInfinity and t0, NegativeInfinity and t1, t0 and PositiveInfinity, and t1 and
PositiveInfinity. 2

Tsumo timepoints therefore allows unintended models such as the ones depicted in Fig-
ure 1(a), where there exist partially ordered sets of timepoints. Although there do ex-
ist time ontologies in which the timepoints are not linearly ordered (e.g. Tbp ordering9

[10]), in such cases the models are all definably equivalent to semilinear orderings.
Since all timepoints are between NegativeInfinity and PositiveInfinity, the models of
Tsumo timepoints cannot be semilinear orderings. On the other hand, there is no other time
ontology that has models in which the comparability graph of the ordering is a directed
acyclic graph (as shown in Figure 1�-extit(a)). We therefore propose adding Axiom (22)
to enforce the linear ordering on timepoints.

8colore.oor.net/sumo/theorems/ex128-2.model
9colore.oor.net/timepoints/bp_ordering.clif

colore.oor.net/sumo/theorems/ex128-2.model
colore.oor.net/timepoints/bp_ordering.clif
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Figure 1. Time models of SUMO with instants connected by relation before.
(a) Nonstandard model where partially ordered branches exist. It is not possible to know what the
order is among all parts of an event that started to occur at instant t1 and finished at instant t6, even
though the instants at which those parts occurred are known. For example, we can not know if
what occurred at t4 occurred before, after, or simultaneously to what occurred at t5 because those
points are not connected by the transitive closure of the ordering relation before.
(b) Linear time model where every instant is connected in a unique timeline by the transitive closure
of the before relation.

3.3. Tsumo ordered timepoints

Incorporating these changes, we have Tsumo ordered timepoints is the set of axioms10 in Table
1 and Table 3.

Note that we have given a conservative definition to the beforeOrEqual relation,
which is not the case in Tsumo timepoints of the original SUMO (see the subtheory in Table
2). On the other hand, because before is a subrelation of beforeOrEqual in SUMO, we
should intuitively be able to derive

(∀x,y) (be f ore(x,y)∨ (x = y)→ be f oreOrEqual(x,y)

yet this sentence cannot be entailed from Tsumo timepoints.

Table 3. Proposed additional axioms for Tsumo ordered timepoints

be f ore(NegativeIn f inity,PositiveIn f inity) (21)

(∀t1, t2)TimePoint(t1)∧TimePoint(t2)→ (be f ore(t1, t2)∨be f ore(t2, t1)∨ (t1 = t2) (22)

(∀x,y)be f oreOrEqual(x,y)↔

be f ore(x,y)∨ ((x = y)∧TimePoint(x)∧TimePoint(y)) (23)

Proposition 3 Tsumo ordered timepoints |= Tsumo timepoints

Proof: The proofs11 were generated by Prover9. 2

Thus, we have proposed Tsumo ordered timepoints, a nonconservative extension of
Tsumo timepoints that eliminates two classes of unintended models - a trivial model with a

10colore.oor.net/sumo_timepoints/sumo_ordered_timepoints.clif
11colore.oor.net/sumo/theorems/timepoints_entails/

colore.oor.net/sumo_timepoints/sumo_ordered_timepoints.clif
colore.oor.net/sumo/theorems/timepoints_entails/


unique time point, and models in which time points are not linearly ordered by the before
relation.

4. Temporal Mereology

The remaining axioms in SUMO-Time extend the ontology by adding time intervals to
the domain. Besides axiomatizing the relationships between timepoints and timeinter-
vals, SUMO-Time also specifies a mereology over time intervals. In this section, we ex-
plore this mereology; we identify a missing axiom, and use this axiom to show that the
axiomatization of the mereology over time intervals can be considered to be a definitional
extension of a subtheory of SUMO-Time.

4.1. TimePoints and TimeIntervals

In addition to an ordering over timepoints, SUMO-Time also contains a subtheory
Tsumo timeintervals

12 (shown in Table 4) that introduces time intervals and their relation-
ship to timepoints. The functions BeginFn and EndFn map a time interval to its begin-
ning and ending timepoints, respectively, The function TimeIntervalFn maps a pair of
timepoints to the time interval for which they are the begin and end.

From a visual inspection of Tsumo timeintervals, it is easy to see that there is a close
relationship to other time ontologies from [10] In the next section, we will make this
relationship precise.

4.2. Problems with the Existing Axiomatization of temporalPart

We first consider Tsumo temporalPart
13, the subset of the axioms from SUMO-Time that

specify a mereology over time positions (i.e. both timepoints and timeintervals) using the
temporalPart relation. Besides a set of axioms that explicitly specify that temporalPart
is a partial ordering, Tsumo temporalPart also contains a set of axioms that specify the rela-
tionships between temporalPart and Allen’s interval relations14.

Problems arise when we consider the temporalPart relation and timepoints – there
exist models in which timepoints contain timeintervals as temporal parts:

Proposition 4 Tsumo timepoints∪Tsumo timeintervals∪Tsumo temporalPart 6|=
¬(∃x,y)TimePoint(x)∧TimeInterval(y)∧ temporalPart(y,x)

Proof: Using Mace415, one can construct a model of Tfinite sumo timepoints ∪
Tsumo timeintervals ∪ Tsumo temporalPart that falsifies the sentence. It is easy to
see that this model can be extended to construct a model of Tsumo timepoints ∪
Tsumo timeintervals ∪ Tsumo temporalPart that also falsifies the sentence. 2

12colore.oor.net/sumo_timeintervals/sumo_timeintervals.clif
13colore.oor.net/sumo/sumo_temporalPart
14Within the axioms of SUMO-Time, the during relation is not given a conservative definition, as is the case

with the other interval relations. We considered this to be a typographical error in the axioms, rather than an
ontological commitment, and hence we assume that during is supposed to have a conservative definition.

15colore.oor.net/sumo/theorems/ex128-3.model

colore.oor.net/sumo_timeintervals/sumo_timeintervals.clif
colore.oor.net/sumo/sumo_temporalPart
colore.oor.net/sumo/theorems/ex128-3.model


Table 4. Theory Tsumo timeintervals

(∀x,y,z)TimePoint(x)∧TimePoint(y)∧TimeInterval(z)∧

(TimeIntervalFn(x,y) = z)→ (BeginFn(z) = x)∧ (EndFn(z) = y) (24)

(∀x,y,z, t)TimeInterval(x)∧TimeInterval(y)∧TimePoint(z)∧TimePoint(t)→

((BeginFn(x)= z)∧(BeginFn(y)= z)∧(EndFn(x)= t)∧(EndFn(y)= t)→ (x= y) (25)

(∀x,y,z)TimeInterval(x)∧TimePoint(y)∧TimePoint(z)→

(BeginFn(x) = y)∧ (EndFn(x) = z)→ be f ore(y,z) (26)

(∀x)TimeInterval(x)→ TimePoint(BeginFn(x))∧TimePoint(EndFn(x)) (27)

(∀x,y)TimePoint(x)∧TimePoint(y)∧be f ore(x,y)→ TimeInterval(TimeIntervalFn(x,y))
(28)

(∀x)TimePosition(x)↔ TimeInterval(x)∨TimePoint(x) (29)

(∀x)TimeInterval(x)→¬TimePoint(x) (30)

We can eliminate models in which timepoints contain timeintervals as temporal parts
by adding the axiom that enforces the condition that the only temporal part of a timepoint
is the timepoint itself. In addition to eliminating this class of unintended models, such an
axiom allows us to axiomatize the temporalPart relation as a definitional extension of
the ontology:

Definition 1 Tsumo temporal mereology is the set of sentences in Table 5.

Table 5. Theory Tsumo temporal mereology

(∀x,y) temporalPart(x,y)→ TimePosition(x)∧TimePosition(y) (31)

(∀x,y)TimePosition(x)∧TimePoint(y)→ (temporalPart(x,y)↔ (x = y)) (32)

(∀x,y)TimePoint(x)∧TimeInterval(y)→

(temporalPart(x,y)↔ temporallyBetweenOrEqual(BeginFn(y),x,EndFn(y))) (33)

(∀x,y)TimeInterval(x)∧TimeInterval(y)→ (temporalPart(x,y)↔

be f oreOrEqual(BeginFn(y),BeginFn(x))∧be f oreOrEqual(EndFn(x),EndFn(y)))
(34)

Theorem 1 Tsumo ordered timepoints ∪ Tsumo timeintervals ∪ Tsumo temporal mereology is a def-
initional extension of Tsumo ordered timepoints ∪ Tsumo timeintervals.



Proof: Using Prover916 we can show that Tsumo temporal mereology is logically equivalent
to a conservative definition for the temporalPart relation. 2

Another way of looking at this result, is that we can specify a definitional extension
of Tsumo ordered timepoints ∪Tsumo timeintervals which is stronger than the original axiomati-
zation of SUMO-Time.

Proposition 5 Tsumo ordered timepoints∪Tsumo timeintervals∪Tsumo temporal mereology |=
Tsumo temporalPart

Proof: Proofs 17. were generated by Prover9. 2

This approach greatly simplifies SUMO Time in terms of its axiomatization as well as
its conceptualization.

Finding a minimal set of axioms may seem to be an intellectual diversion, or even
a fetish. For example, it is difficult to see the benefit of finding the minimal set of equa-
tions for Boolean lattices once we are confident that the axioms do in fact axiomatize
Boolean lattices. Nevertheless, by identifying a minimal set of axioms which are suffi-
cient for axiomatizing a class of structures, we are in a better position to gaining insights
into the fundamental ontological commitments of an ontology. We can distinguish the
axioms that capture the basic ontological commitments of SUMO-Time from those sen-
tences which are logical consequences. In particular, we can see that the real ontolog-
ical commitments are in the axiomatization of the relationship between timepoints and
timeintervals.

It is easy to see that Tsumo ordered timepoints ∪ Tsumo timeintervals ∪ Tsumo time mereology

is a nonconservative extension of Tsumo time. The question remains - have we eliminated
all of the unintended models? What exactly are the models of the extended ontology?
We address this question in the following section.

5. Verification of the Extension of SUMO Time

Verification is concerned with the relationship between the intended models of an on-
tology and the models of the axiomatization of the ontology. In particular, we want to
characterize the models of an ontology up to isomorphism18 and determine whether or
not these models are equivalent to the intended models of the ontology. This relationship
between the intended models and the models of the axiomatization plays a key role in
the application of ontologies in areas such as semantic integration and decision support.

Unfortunately, it can be quite difficult to characterize the models of an ontology up
to isomorphism. Ideally, since the classes of structures that are isomorphic to an ontol-
ogy’s models often have their own axiomatizations, we should be able to reuse the char-
acterizations of these other structures. The key to this endeavour is the notion of logical
synonymy:

16colore.oor.net/sumo/theorems/temporalPart_definitional/
17colore.oor.net/sumo/theorems/temporalPart_entails/
18Isomorphic structures have the same model-theoretic properties.

colore.oor.net/sumo/theorems/temporalPart_definitional/
colore.oor.net/sumo/theorems/temporalPart_entails/


Definition 2 Two theories T1 and T2 are synonymous iff there exist two sets of translation
definitions ∆ and Π, respectively from T1 to T2 and from T2 to T1, such that T1 ∪Π is
logically equivalent to T2∪∆.

By the results in [17], there is a bijection on the sets of models for synonymous
theories. We can therefore characterize the models of the ontology being verified by
demonstrating that the ontology is synonymous with a logical theory whose models we
understand. In particular, using the approach taken in [9] to show the following:

Theorem 2 Tsumo ordered timepoints ∪ Tsumo timeintervals is logically synonymous with
Tbounded linear ordering19 ∪ Tstrict graphical20.

Proof: Given the set of translation definitions21 ∆ shown in Table 6, using Prover9, we
have shown that Tsumo ordered timepoints∪ Tsumo timeintervals∪∆ |= Tbounded linear ordering

∪ Tstrict graphical. In addition, given the set of translation definitions Π, shown
in Table 7, we have proved that Tbounded linear ordering ∪ Tstrict graphical ∪ Π |=
Tsumo ordered timepoints ∪ Tsumo timeintervals. Finally, we can use Prover9 to show
that Tbounded linear ordering ∪ Tstrict graphical ∪ ∆ |= Π, and Tsumo ordered timepoints ∪
Tsumo timeintervals ∪ Π |= ∆. Therefore, the theories are synonymous. 2

Table 6. Translation Definitions ∆

(∀x) point(x)≡ TimePoint(x)

(∀x) line(x)≡ TimeInterval(x)

(∀x,y) in(x,y)≡ (begin(y,x)∨ end(y,x)∨ (x = y))

(∀x,y) lt(x,y)≡ be f ore(x,y)

We can use this result to characterize the models of Tsumo ordered timepoints ∪
Tsumo timeintervals:

Corollary 1 M ∈Mod(Tsumo ordered timepoints∪Tsumo timeintervals) iff

1. M ∼= 〈P∪G, lt, inG〉, where

(a) 〈P, lt〉 is a linear ordering

19colore.oor.net/orderings/bounded_linear_ordering.clif
20colore.oor.net/bipartite_incidence/strict_graphical.clif
21Function symbols that require restricted quantification of arguments in every sentence because they repre-

sent partial functions, such as SUMO BeginFn, EndFn, and TimeIntervalFn, can not be mapped into relations.
In order to make map Π possible, we have characterized predicates begin, end, and interval with the semantics
of SUMO function symbols BeginFn, EndFn, and TimeIntervalFn, and produced the corresponding syntactic
translation of every sentence of theory Tsumo timeintervals into the new representation. We have used the same
representation for map ∆.

colore.oor.net/orderings/bounded_linear_ordering.clif
colore.oor.net/bipartite_incidence/strict_graphical.clif


Table 7. Translation Definitions Π

(∀x)TimePoint(x)≡ point(x)

(∀x)TimeInterval(x)≡ line(x)

(∀x,y)begin(y,x)≡ (line(y)∧ point(x)∧ (in(x,y)∧ (∀z) point(z)∧ in(z,y)→ leq(x,z))

(∀x,y) end(y,x)≡ (line(y)∧ point(x)∧ (in(x,y)∧ ((∀z) point(z)∧ in(z,y)→ leq(z,x))

((∀x,y,z) interval(x,y,z)≡ point(x)∧ point(y)∧ line(z)∧ in(x,z)∧ in(y,z)∧ lt(x,y))

(∀x,y)be f ore(x,y)≡ lt(x,y)

(b) 〈P,G, inG〉 is a strict graphical incidence structure22..

2. 〈t〉 ∈ TimePoint iff t ∈ P;
3. 〈i〉 ∈ TimeInterval iff i ∈ G;
4. BeginFn(i) = t iff 〈t, i〉 ∈ inG and for any t′ ∈ P such that 〈t′, i〉 ∈ inG,

we have 〈t, t′〉 ∈ lt.
5. EndFn(i) = t iff 〈t, i〉 ∈ inG and for any t′ ∈ P such that 〈t′, i〉 ∈ inG,

we have 〈t′, t〉 ∈ lt.
6. TimeIntervalFn(t1, t2) = i iff 〈t1, i〉, 〈t2, i〉 ∈ inG;
7. 〈t1, t2〉 ∈ before iff 〈t1, t2〉 ∈ lt.

6. Relationship to Other Ontologies

The verification of Tsumo ordered timepoints ∪ Tsumo timeintervals does not only provide us
with a representation theorem for its models, but it also enables us to formally specify
the relationships to other ontologies by reusing the verification of these other ontologies.

6.1. Combined Time Ontologies

As noted in Section 3, an inspection of the signatures of SUMO Time and the ontology
Tendpoints indicates that there should be a close relationship between the two ontologies.
In fact, we have the following:

Theorem 3 Tsumo ordered timepoints ∪ Tsumo timeintervals is synonymous with
Tinterval with endpoints.

Proof: Let ϒ be the set of translation definitions shown in Table 8, Using Prover9, we
have shown that

22A strict graphical incidence structure is a tuple G = 〈X ,Y, inG〉 where X ∩Y = /0, inG ⊆ (X ×Y ), and
elements of G that are related by in are called incident. All elements of Y are incident with exactly two elements
of X , and for each pair of points p,q ∈ X there exists a unique element in Y that is incident with both p and q.



Tsumo ordered timepoints∪Tsumo timeintervals∪ϒ |= Tinterval with end points
Tinterval with end points∪ϒ |= Tsumo ordered timepoints∪Tsumo timeintervals

Table 8. Translation Definitions ϒ

(∀x)TimePoint(x)≡ timepoint(x)

(∀x)TimeInterval(x)≡ timeinterval(x)

(∀x,y) (BeginFn(x) = y)≡ (begino f (x) = y)

(∀x,y) (EndFn(x) = y)≡ (endo f (x) = y)

(∀x,y,z) (TimeIntervalFn(x,y) = z)≡ (between(x,y) = z)

2

Since Tinterval with endpoints is inconsistent with Tendpoints, it follows that Tsumo ordered

timepoints∪ Tsumo timeintervals cannot interpret Tendpoints. Nevertheless, we can still specify
the relationship between these theories. We can use the notion of generalized similarity
(introduced in [8]) to compare two theories that are in different hierarchies of an ontology
repository and thereby identify the maximal shared subtheory between them.

Theorem 4 The generalized similarity of Tendpoints by Tsumo ordered timepoints ∪
Tsumo timeintervals is Tfinite endpoints23.

Proof: We have already seen that Tsumo ordered timepoints ∪ Tsumo timeintervals is syn-
onymous with Tinterval with endpoints24. Since Tfinite endpoints is the similarity of
Tendpoints and Tinterval with endpoints, by the definition we have that the gener-
alized similarity of Tendpoints by Tsumo ordered timepoints ∪ Tsumo timeintervals is
Tfinite endpoints. 2

This result tells us that the difference between SUMO Time and Tendpoints lies in the
underlying ordering on time points rather than in the relationship between time points
and time intervals.

6.2. Generic and Upper Ontologies

Theories such as Tendpoints that axiomatize the relationships between time points and
time intervals appear in several other ontologies, and we can leverage the verification of
SUMO Time to specify mappings to these generic and upper ontologies.

23color.oor.net/combined_time/finite_endpoints
24colore.oor.net/combined_time/interval_with_endpoints.clif

color.oor.net/combined_time/finite_endpoints
colore.oor.net/combined_time/interval_with_endpoints.clif


6.2.1. PSL

We earlier noted that the PSL-Core ontology contains a time ontology that axiomatized
a linear ordering over time points that included time points at infinity. Although the
original PSL-Core ontology did not contain time intervals, the work of [2] extended it by
importing Tinterval with endpoints. Using Theorem 3 therefore gives us the following:

Theorem 5 Tinterval psl core faithfully interprets Tsumo ordered timepoints ∪ Tsumo timeinter-

vals.

In a sense, the revised axiomatization of SUMO Time could be seen as the natural
time ontology for Tinterval psl core25.

6.2.2. DOLCE

The upper ontology DOLCE [12] axiomatizes the mereology on time intervals
Tdolce time mereology.26. The verification of the revised SUMO Time not only enables us
to specify the relationship to DOLCE, it also allows us to identify which mereology on
time intervals is definable in models of Tsumo ordered timepoints ∪ Tsumo timeintervals.

Theorem 6 Tsumo ordered timepoints ∪ Tsumo timeintervals interprets Tdolce time mereology.

Proof: By the results in [2], Tinterval with endpoints interprets the time interval ontol-
ogy Tcem periods,27 which in turn faithfully interprets Tdolce time mereology. Together
with Theorem 3, we know that Tsumo ordered timepoints ∪ Tsumo timeintervals interprets
Tdolce time mereology. 2

We can therefore conclude that a complete extensional mereology is definable over
time intervals in models of Tsumo ordered timepoints ∪ Tsumo timeintervals.

7. Summary

SUMO is a widely used upper ontology, yet there is not a full understanding of its meta-
logical properties. Following the approach of [8], in which an upper ontology is consid-
ered to be composed of generic ontologies, we have begun the analysis of SUMO by
the verification of the time ontology (SUMO Time) within SUMO. We identified three
classes of unintended models of SUMO Time – models with a unique timepoint, models
with partially ordered sets of time points, and models in which time intervals are tempo-
ral parts of time points. We proposed three new axioms that eliminate these unintended
models, and then verified the extended theory, characterizing its models up to elemen-
tary equivalence. An interesting outcome was a restructuring of SUMO Time as the def-
initional extension of two modules, thus greatly simplifying the axiomatization. Finally,
we specified the metalogical relationships between various time ontologies and the new
axiomatization of SUMO Time.

25colore.oor.net/interval_psl/interval_psl_core.clif
26colore.oor.net/dolce_time_mereology/dolce_time_mereology.clif
27colore.oor.net/periods/cem_periods.clif

colore.oor.net/interval_psl/interval_psl_core.clif
colore.oor.net/dolce_time_mereology/dolce_time_mereology.clif
colore.oor.net/periods/cem_periods.clif


The approach taken in this paper will be extended to the remaining generic ontolo-
gies within SUMO – dates and duration, mereotopology, process, measure, objects, and
qualities.
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