
Ontology of the Process Specification Language

Michael Grüninger

Institute for Systems Research, University of Maryland, College Park, MD 20742
gruning@cme.nist.gov

1 Motivation

Representing activities and the constraints on their occurrences is an integral
aspect of commonsense reasoning, particularly in manufacturing, enterprise
modelling, and autonomous agents or robots. In addition to the traditional
concerns of knowledge representation and reasoning, the need to integrate soft-
ware applications in these areas has become increasingly important. However,
interoperability is hindered because the applications use different terminol-
ogy and representations of the domain. These problems arise most acutely for
systems that must manage the heterogeneity inherent in various domains and
integrate models of different domains into coherent frameworks. For example,
such integration occurs in business process reengineering, where enterprise
models integrate processes, organizations, goals and customers. Even when
applications use the same terminology, they often associate different seman-
tics with the terms. This clash over the meaning of the terms prevents the
seamless exchange of information among the applications. Typically, point-
to-point translation programs are written to enable communication from one
specific application to another. However, as the number of applications has
increased and the information has become more complex, it has been more
difficult for software developers to provide translators between every pair of
applications that must cooperate. What is needed is some way of explicitly
specifying the terminology of the applications in an unambiguous fashion.

The Process Specification Language (PSL) ([13], [8]) has been designed to
facilitate correct and complete exchange of process information among man-
ufacturing systems 1. Included in these applications are scheduling, process
modeling, process planning, production planning, simulation, project manage-
ment, workflow, and business process reengineering. This chapter will give an
1 PSL has been accepted as project ISO 18629 within the International Organisa-

tion of Standardisation, and as of October 2002, part of the work is under review
as a Draft International Standard.

2 Michael Grüninger

overview of the PSL Ontology, including its formal characterization as a set
of theories in first-order logic and the range of concepts that are axiomatized
in these theories.

2 Formal Properties of the PSL Ontology

We will begin by considering the distinguishing formal characteristics of the
PSL Ontology, independently from its content.

2.1 Semantics and Axiomatization

The PSL Ontology is a set of theories in the language of first-order logic, and
the semantics of a first-order theory are based on the notion of an interpreta-
tion that specifies a meaning for each symbol in a sentence of the language.
In practice, interpretations are typically specified by identifying each symbol
in the language with an element of some algebraic or combinatorial structure,
such as graphs, linear orderings, partial orderings, groups, fields, or vector
spaces; the underlying theory of the structure then becomes available as a
basis for reasoning about the concepts and their relationships.

We can evaluate the adequacy of the application’s ontology with respect
to some class of structures that capture the intended meanings of the ontol-
ogy’s terms by proving that the ontology has the following two fundamental
properties:

• Satisfiability: every structure in the class is a model of the ontology.
• Axiomatizability: every model of the ontology is isomorphic to some struc-

ture in the class.

The purpose of the Axiomatizability Theorem is to demonstrate that there
do not exist any unintended models of the theory, that is, any models that are
not specified in the class of structures. In general, this would require second-
order logic, but the design of PSL makes the following assumption (hereafter
referred to as the Interoperability Hypothesis): The ontology supports inter-
operability among first-order inference engines that exchange first-order sen-
tences. By this hypothesis, we do not need to restrict ourselves to elementary
classes of structures when we are axiomatizing an ontology. Since the appli-
cations are equivalent to first-order inference engines, they cannot distinguish
between structures that are elementarily equivalent. Thus, the unintended
models are only those that are not elementary equivalent to any model in the
class of structures.

Classes of structures for theories within the PSL Ontology are therefore
axiomatized up to elementary equivalence – the theories are satisfied by any
model in the class, and any model of the core theories is elementarily equiva-
lent to a model in the class. Further, each class of structures is characterized
up to isomorphism.

Process Specification Language 3

2.2 Invariants and Classification

Many ontologies are specified as taxonomies or class hierarchies, yet few ever
give any justification for the classification. If we consider ontologies of math-
ematical structures, we see that logicians classify models by using properties
of models, known as invariants, that are preserved by isomorphism. For some
classes of structures, such as vector spaces, invariants can be used to classify
the structures up to isomorphism; for example, vector spaces can be classified
up to isomorphism by their dimension. For other classes of structures, such
as graphs, it is not possible to formulate a complete set of invariants. How-
ever, even without a complete set, invariants can still be used to provide a
classification of the models of a theory.

Following this methodology, the set of models for the core theories of PSL
are partitioned into equivalence classes defined with respect to the set of
invariants of the models. Each equivalence class in the classification of PSL
models is axiomatized using a definitional extension of PSL. In particular,
each definitional extension in the PSL Ontology is associated with a unique
invariant; the different classes of activities or objects that are defined in an
extension correspond to different properties of the invariant. In this way, the
terminology of the PSL Ontology arises from the classification of the models
of the core theories with respect to sets of invariants. The terminology within
the definitional extensions intuitively corresponds to classes of activities and
objects.

This approach can also be justified by the original motivation for PSL. If
the ontologies of two software applications have the same language, then the
applications will be interoperable if they share the semantics of the terminol-
ogy in their corresponding theories. Sharing semantics between applications
is equivalent to sharing models of their theories, that is, the theories have iso-
morphic sets of models. We therefore need to determine whether or not two
models are isomorphic, and in doing so, we can use invariants of the models.

2.3 Types and Process Descriptions

If two software applications both used an ontology for algebraic fields, they
would not exchange new definitions, but rather they would exchange sentences
that expressed properties of elements in their models. For algebraic fields,
such sentences are equivalent to polynomials. Similarly, the software applica-
tions that use PSL do not exchange arbitrary sentence, such as new axioms
or even conservative definitions, in the language of their ontology. Instead,
they exchange process descriptions, which are sentences that are satisfied by
particular activities, occurrences, states, or other objects (see Figures 4 and
5).

4 Michael Grüninger

Within PSL, we formally characterize a process description as a boolean
combination of n-types 2 for the PSL Ontology that are realized by some
model of the ontology. In the algebra example, polynomials are n-types for
elements in an algebraic field. In the PSL core theory Tcomplex, formulae that
specify the constraints under which subactivities of an activity occur are types
for complex activities. In the axiomatization of situation calculus in [11], pre-
condition and effect axioms are types for actions.

For general theories, there may exist elements whose types cannot be de-
fined by a sentence in the language. For example, although polynomials are
types for elements in an algebraic field, there exist real numbers that are not
definable using polynomials, namely transcendental numbers such as π and
e. Within PSL, the definable types for elements in each class of models are
specified as classes of sentences using a BNF grammar. If an activity does not
have a definable type, then the process description cannot be axiomatized,
just as transcendental numbers cannot be specified by polynomials.

2.4 Relationship to Other Process Ontologies

There have been a variety of process ontologies developed within the artificial
intelligence community, particularly in the context of robotics and planning
systems.

One family of projects has attempted to provide a sharable ontology of
planning information for use by disparate and communicating systems. The
Sharable Plan and Activity Representation (SPAR) [16] specified an abstract
ontology setting out major categories (such as space, time, agents, actions,
reasoning, and plans), and a set of modular specialised ontologies which aug-
ment the general categories with sets of concepts and alternative theories of
more detailed notions commonly used by planning systems, such as specific on-
tologies and theories of time points, temporal relations, and complex actions.
SPAR evolved out of earlier work with the Common Plan Representation [9]
and the O-Plan project [15] at the University of Edinburgh.

Another plan-oriented process ontology is the Planning Domain Definition
Language (PDDL) [1], which is used extensively in the AIPS planning compe-
tition. PDDL is intended to express the particular domain used in a planning
system, including a specification of states, the set of possible activities, the
structure of complex activities, and the effects of activities.

The Cognitive Robotics Group at the University of Toronto has proposed
the language GOLOG [6] as a high-level robotics programming language.
GOLOG provides mechanisms for specifying complex activities as programs in
2 An n-type for a first-order theory T is a set of formulae Φ(x1, ..., xn), such that

for some model M of T , and some n-tuple a of elements of M, we have M |= φ(a)
for all φ in Φ. If t is an n-type, then a model M realizes t if and only if there are
a1, ..., an ∈ M such that M |= φ(a1, ..., an) for each φ ∈ t. An n-type for a theory
is a therefore consistent set of formulae (each of which has n free variables) which
is satisfied by a model of the theory.

Process Specification Language 5

a second-order language that extends the axiomatization of situation calculus
found in [11].

The Workflow Management Coalition has been developing a standard ter-
minology which can serve as a common framework for different workflow man-
agement system vendors. The ontology for this effort is the Workflow Process
Definition Language (WPDL) [17].

In the context of the Semantic Web, much work has been done using the
DARPA Agent Markup Language (DAML) [4]. In particular, the DAML-S
ontology [7] provides a set of process classes that can be specialized to describe
a variety of Web services.

These approaches to process representation lack one or more of the for-
mal properties of the PSL Ontology. Ontologies such as SPAR, CPR, IN-
OVA, WPDL, and DAML-S do not provide a model theory. The ontologies
for WPDL, PDDL, and those found in [12] specify a formal semantics, but
they do not provide any axiomatization of this semantics. Finally, ontologies
such as Golog and PDDL only specify syntactic classes of process descriptions
without any underlying theory for complex activities.

3 Overview of PSL Core Theories

Within the set of first-order theories that comprise the PSL Ontology, there is
a distinction between core theories and definitional extensions 3. Core theories
introduce new primitive concepts, while all terms introduced in a definitional
extension that are conservatively defined using the terminology of the core
theories.

All core theories within the ontology are consistent extensions of PSL-Core
(Tpsl core), although not all extensions need be mutually consistent. Also, the
core theories need not be conservative extensions of other core theories. The
relationships among the core theories in the PSL Ontology are depicted in
Figure 1. The lexicon of the core theories can be found in Table 1.

In the remainder of this section, we will consider the intuitions for each of
the core theories in Figure 1. The definitional extensions in the PSL Ontology
will be discussed in the next section.

3.1 PSL-Core

The purpose of PSL-Core is to axiomatize a set of intuitive semantic primitives
that is adequate for describing the fundamental concepts of manufacturing
processes 4. Consequently, this characterization of basic processes makes few
3 The complete set of axioms for the PSL Ontology can be found at
http://www.mel.nist.gov/psl/psl-ontology/. Core theories are indicated by
a .th suffix and definitional extensions are indicated by a .def suffix

4 The axiomatization of PSL-Core is based on the results of the earlier Process
Interchange Format project [5].

6 Michael Grüninger

Tpslcore activity(a) a is an activity
activity occurrence(o) o is an activity occurrence
timepoint(t) t is a timepoint
object(x) x is an object
occurrence of(o, a) o is an occurrence of a
beginof(o) the beginning timepoint of o
endof(o) the ending timepoint of o
before(t1, t2) timepoint t1 precedes timepoint t2

on the timeline

Tsubactivity subactivity(a1, a2) a1 is a subactivity of a2

primitive(a) a is a minimal element of the
subactivity ordering

Tatomic atomic(a) a is either primitive or a concurrent
activity

conc(a1, a2) the activity that the concurrent
composition of a1 and a2

Tocctree successor(a, s) the element of an occurrence tree
that is the next occurrence of a after
the activity occurrence s

legal(s) s is an element of a legal occurrence
tree

initial(s) s is the root of an occurrence tree
earlier(s1, s2) s1 precedes s2 in an occurrence tree
poss(a, s) there exists a legal occurrence of a

that is a successor of s

Tdisc state holds(f, s) the fluent f is true immediately af-
ter the activity occurrence s

prior(f, s) the fluent f is true immediately be-
fore the activity occurrence s

Tcomplex min precedes(s1, s2, a) the atomic subactivity occurrence s1

precedes the atomic subactivity oc-
currence s2 in an activity tree for a

root(s, a) the atomic subactivity occurrence s
is the root of an activity tree for a

Tactocc subactivity occurrence(o1, o2) o1 is a subactivity occurrence of o2

root occ(o) the initial atomic subactivity occur-
rence of o

leaf occ(s, o) s is the final atomic subactivity oc-
currence of o

Tduration timeduration(d) d is a timeduration
duration(t1, t2) the timeduration whose value is

the “distance” from timepoint t1 to
timepoint t2

lesser(d1, d2) the linear ordering relation over
timedurations

Table 1. Lexicon for core theories in the PSL Ontology.

Process Specification Language 7

6

6

6

6

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
....

.........
.........
........

�

@
@

@
@

@@I

@
@

@
@

@@I

.........
....

.........
.........
........

�

Tpsl core

Tactocc

Tocctree
Tsubactivity

Tcomplex

Tduration

Tatomic Tdisc state

Fig. 1. The core theories of the PSL Ontology. Solid lines indicate conservative
extension, while dashed lines indicate an extension that is not conservative.

assumptions about their nature beyond what is needed for describing those
processes, and the Core is therefore rather weak in terms of logical expres-
siveness.

The basic ontological commitments of PSL-Core are based on the following
intuitions:

Intuition 1: There are four kinds of entities required for reasoning
about processes – activities, activity occurrences, timepoints, and ob-
jects.

There are some approaches (e.g. [3]) that do not distinguish between time-
points and activity occurrences, so that activity occurrences form a subclass
of timepoints. However, activity occurrences have preconditions and effects,
whereas timepoints do not. Other approaches hold that timepoints are prim-
itives but activity occurrences are not; for example, [14] claims that one can
derive timepoints as “ticks” of a clock activity; however, such an approach
ties the temporal ontology too closely to the process ontology.

Intuition 2: Activities may have multiple occurrences, or there may
exist activities which do not occur at all.

8 Michael Grüninger

In contrast to many object-oriented approaches, activity occurrences can-
not considered to be instances of activities, since activities are not classes
within the PSL Ontology. 5

There are also some historical reasons for making activity occurrences
distinct from the notion of instances. The core theory Tocctree introduces the
notion of occurrence trees, which are isomorphic to situation trees without
the initial situation S0 (i.e. situations are identified as being occurrences of
activities), and the situation calculus treats both activities and situations as
first-order elements – situations are not instances of activities.

Intuition 3: Timepoints are linearly ordered, forwards into the future,
and backwards into the past.

There are several options that may be taken to formalize this intuition.
Within PSL-Core, an additional ontological commitment was made so that
the timeline is infinite, with two endpoints, inf− and inf+. This was done in
order to capture the intuition that some objects exist only for a finite period
of time, while other objects always exist, that is, there is no timepoint at
which they are created or destroyed.

There are also different ontological commitments about time that are not
made within the PSL Ontology, such as the denseness of the timeline. Any
such commitments must be axiomatized within a core theory extension to
PSL-Core.

Intuition 4: Activity occurrences and objects are associated with
unique timepoints that mark the begin and end of the occurrence or
object.

Note that the ontology allows for the existence of infinite activity occur-
rences; in these cases, beginof or endof will take on the values of −inf or
+inf .

3.2 Occurrence Trees

Models for the core theory Tocctree are extensions of models of Tpslcore by
adding occurrence trees.

Intuition 5: An occurrence tree is a partially ordered set of activ-
ity occurrences, such that for a given set of activities, all discrete
sequences of their occurrences are branches of the tree.

5 One can of course specify classes of activities in a process description. For exam-
ple the term pickup(x, y) can denote the class of activities for picking up some
object x with manipulator y, and the term move(x, y, z) can denote the class
of activities for moving object x from location y to location z. Ground terms
such as pickup(Block1, LeftHand) and move(Shipment1, Seattle, Chicago) are
instances of these classes of activities, and each instance can have different occur-
rences.

Process Specification Language 9

An occurrence tree contains all occurrences of all activities; it is not simply
the set of occurrences of a particular (possibly complex) activity. Because the
tree is discrete, each activity occurrence in the tree has a unique successor
occurrence of each activity.

Occurrence trees are closely related to the situation trees that are models
of Reiter’s axiomatization of situation calculus ([11], [10]) if we interpret situ-
ations to be activity occurrences. However, there are some differences between
Tocctree and situation calculus. One interpretation of situation calculus is that
the situations are sequences of actions, with the initial situation S0 being the
null sequence; since S0 is not the occurrence of any activity, it has no corre-
sponding object within PSL. Also, Reiter employs a second-order axiom to
eliminate trees whose branches are isomorphic to nonstandard models of the
natural numbers. However, such nonstandard trees are elementarily equiva-
lent to standard trees, so that by the Interoperability Hypothesis, there is no
need to invoke a second-order axiom.

Intuition 6: There are constraints on which activities can possibly
occur in some domain.

This intuition is the cornerstone for characterizing the semantics of classes
of activities and process descriptions. Although occurrence trees characterize
all sequences of activity occurrences, not all of these sequences will intuitively
be physically possible within the domain. We will therefore want to consider
the subtree of the occurrence tree that consists only of possible sequences of
activity occurrences; this subtree is referred to as the legal occurrence tree. For
example, in Figure 2, there is no legal successor occurrence of make frame
after o4

16, and there is no legal successor occurrence of assemble after o1
1. We

will later discuss how the definitional extensions of the PSL Ontology use
different constraints on possible activity occurrences as a way of classifying
activities.

Intuition 7: Every sequence of activity occurrences has an initial
occurrence (which is the root of an occurrence tree).

This intuition is closely related to the properties of occurrence trees. For
example, one could consider occurrences to form a semilinear ordering (which
need not have a root element) rather than a tree (which must have a root
element). However, we are using occurrence trees to characterize the seman-
tics of different classes of activities, rather than using the occurrence tree to
represent history (which may not have an explicit initial event). In our case,
it is sufficient to consider all possible interactions between the set of activi-
ties in the domain, and we lose nothing by restricting our attention to initial
occurrences of the activities. For example, given the query “Can the factory
produce 1000 widgets by Friday?”, one can take the initial state to be the cur-
rent state, and the initial activity occurrences being the activities that could
be performed at the current time.

10 Michael Grüninger

�
�

�

@
@

@
@

@
@

@
@

@

�
�

�

@
@

@�
�

�

@
@

@

@
@

@

A
A
A
A
A
A

�
�
�
�
�
�

@
@

@

@
@

@

@
@

@

@
@

@

@
@

@ �
�

�

o4
12

o4
19

o2
20

o4
28

o4
22

o4
4

o2
8

o2
5

o2
3

o4
7

o4
16

o1
17

o4
2

o1
1

o2
23

o3
31

o4
26

o2
18

o4
24.

o4
30 o3

34

o1
21 o3

27

o3
33

o1
29

o3
6

o3
11

o4
10 o3

15

o3
9

o4
14

o3
13

. . .o3
25

. . .o3
32

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

.

. . .

Fig. 2. Example of legal occurrence trees. The activities in the domain are
make body, make frame, paint, and polish. The elements o1

i denote occurrences
of the activity make body, o2

i denote occurrences of the activity make frame, o3
i

denote occurrences of the activity paint, and o4
i denote occurrences of the activity

polish; for example, o2
4 = successor(make frame, o1

1). The activity occurrences o1
1

and o4
16 are the initial occurrences in their respective occurrence trees.

Intuition 8: The ordering of activity occurrences in a branch of an
occurrence tree respects the temporal ordering.

Several approaches to temporal ontologies ([3]) conflate the ordering over
activity occurrences with the ordering over timepoints. Within the theory
of occurrence trees, these are distinct ordering relations. The set of activity
occurrences is partially ordered (hence the intuition about occurrence trees),
but timepoints are linearly ordered (since this theory is an extension of PSL-
Core). However, every branch of an occurrence tree is totally ordered, and the
intuition requires that the beginof timepoint for an activity occurrence along
a branch is before the beginof timepoints of all following activity occurrences
on that branch.

3.3 Discrete States

Most applications of process ontologies are used to represent dynamic be-
haviour in the world so that intelligent agents may make predictions about
the future and explanations about the past. In particular, these predictions

Process Specification Language 11

and explanations are often concerned with the state of the world and how
that state changes. The PSL core theory Tdisc state is intended to capture the
basic intuitions about states and their relationship to activities.

Intuition 9: State is changed by the occurrence of activities.

Intuitively, a change in state is captured by a state that is either achieved
or falsified by an activity occurrence. We therefore need a relation that spec-
ifies the state that is intuitively true prior to an activity occurrence and also
a relation that specifies the state that is intuitively true after an activity
occurrence.

This illustrates another difference between PSL and versions of the situ-
ation calculus that use only the holds relation for reified fluents 6. Since the
situation S0 does not correspond to an activity occurrence, the state prior
to an initial activity occurrence is the same as the state that holds for S0.
However, since PSL refers only to initial activity occurrences, it requires an
additional relation for the prior state such that all initial activity occurrences
agree on the states prior to their occurrence; that is, if a fluent f holds prior to
the initial activity occurrence of one occurrence tree, then it holds prior to the
initial activity occurrence of all occurrence trees in the model. For example,
in Figure 2, the same fluents hold prior to both initial activity occurrences o1

1

and o4
16.

Intuition 10: State can only be changed by the occurrence of activi-
ties.

Thus, if some state holds after an activity occurrence, but after an activity
occurrence later along the branch it is false, then an activity must occur at
some point between that changes the state. This also leads to the requirement
that the state holding after an activity occurrence will be the same state
holding prior to any immediately succeeding occurrence, since there cannot
be an activity occurring between the two by definition.

Intuition 11: State does not change during the occurrence of an ac-
tivity in the occurrence tree.

Tdisc state cannot represent phenomena in which some feature of the world
is changing as some continuous function of time (hence the name “Discrete
State” for the extension). State can change only during the occurrence of
complex activities.
6 Within situation calculus, fluents are situation dependent properties. In a non-

reified approach, these properties are represented by predicates, whereas in the
reified approach (adopted by the PSL Ontology), fluents are elements of the do-
main.

12 Michael Grüninger

3.4 Subactivities

The PSL Ontology uses the subactivity relation to capture the basic intuitions
for the composition of activities. This relation is a discrete partial ordering,
in which primitive activities are the minimal elements.

The core theory Tsubactivity alone does not specify any relationship between
the occurrence of an activity and occurrences of its subactivities. For example,
consider the activities used in Figure 2. We can compose paint and polish
as subactivities of some other activity, say surfacing, and we can compose
make body and make frame into another activity, say fabricate. However,
this specification of subactivities alone does not allow us to say that surfacing
is a nondeterministic activity, or that fabricate is a deterministic activity.

3.5 Atomic Activities

The primary motivation driving the axiomatization of Tatomic is to capture
intuitions about the occurrence of concurrent activities. Since concurrent ac-
tivities may have preconditions and effects that are not the conjunction of
the preconditions and effects of their activities, Tatomic takes the following
approach:

Intuition 12: Concurrency is represented by the occurrence of one
concurrent activity rather than multiple concurrent occurrences.

Atomic activities are either primitive or concurrent (in which case they
have proper subactivities). The core theory Tatomic introduces the function
conc that maps any two atomic activities to the activity that is their con-
current composition. Essentially, what we call an atomic activity corresponds
to some set of primitive activities, leading to the following intuition for this
theory:

Intuition 13: every concurrent activity is equivalent to the composi-
tion of a set of primitive activities.

Although Tsubactivity can represent arbitrary composition of activities, the
composition of atomic activities is restricted to concurrency; to represent com-
plex, or nonatomic, activities requires the next core theory.

3.6 Complex Activities

The core theory Tcomplex characterizes the relationship between the occur-
rence of a complex activity and occurrences of its subactivities. Occurrences
of complex activities correspond to sets of occurrences of subactivities; in
particular, these sets are subtrees of the occurrence tree.

Intuition 14: An activity tree consists of all possible sequences of
atomic subactivity occurrences beginning from a root subactivity oc-
currence.

Process Specification Language 13

In a sense, activity trees are a microcosm of the occurrence tree, in which
we consider all of the ways in which the world unfolds in the context of an
occurrence of the complex activity. For example, if occurrence of the complex
activity fabricate consists of an occurrence of make frame followed by an oc-
currence of make body, then {o1

1, o
2
20, o

2
23} and {o1

1, o
2
5, o

2
8} can be two activity

trees for fabricate. If an occurrence of the complex activity surfacing con-
sists of either an occurrence of polish or an occurrence of paint, then {o3

9, o
2
10}

and {o3
13, o

4
14} can be two activity trees for surfacing.

Any activity tree is actually isomorphic to multiple copies of a minimal
activity tree arising from the fact that other external activities may be oc-
curring during the complex activity. For example, {o1

1, o
2
5} and {o1

1, o
2
8} are

two isomorphic copies of the tree that captures the intuition “make the frame
and then make the body”. In the first case, o4

2 and o4
4 are occurrences of the

activity polish during the occurrence of fabricate.

Intuition 15: Different subactivities may occur on different branches
of the activity tree i.e. different occurrences of an activity may have
different subactivity occurrences or different orderings on the same
subactivity occurrences.

In this sense, branches of the activity tree characterize the nondetermin-
ism that arises from different ordering constraints or iteration. For example,
the surfacing activity is intuitively nondeterministic; the activity trees for
surfacing contain two branches, one branch consisting of an occurrence of
polish and one branch consisting of an occurrence of paint.

Finally, there may be branches of a subtree of the occurrence tree that
are isomorphic to branches of an activity tree, yet they do not correspond to
occurrences of the activity. For example, in Figure 2, {o1

17, o
2
23} need not be

an activity tree for fabricate, even though it is isomorphic to a branch of an
activity tree.

Intuition 16: An activity will in general have multiple activity trees
within an occurrence tree, and not all activity trees for an activity need
be isomorphic. Different activity trees for the same activity can have
different subactivity occurrences.

Following this intuition, the core theory Tcomplex does not constrain which
subactivities occur. For example, conditional activities are characterized by
cases in which the state that holds prior to the activity occurrence determines
which subactivities occur. In fact, an activity may have subactivities that
do not occur; the only constraint is that any subactivity occurrence must
correspond to a subtree of the activity tree that characterizes the occurrence
of the activity.

Intuition 17: Not every occurrence of a subactivity is a subactivity
occurrence. There may be other external activities that occur during
an occurrence of an activity.

14 Michael Grüninger

This theory does not force the existence of complex activities; there may
be subtrees of the occurrence tree that contain occurrences of subactivities,
yet not be activity trees. This allows for the existence of activity attempts,
intended effects, and temporal constraints; subtrees that do not satisfy the
desired constraints will simply not correspond to activity trees for the activity.

3.7 Complex Activity Occurrences

Within Tcomplex, complex activity occurrences correspond to activity trees,
and consequently occurrences of complex activities are not elements of the
legal occurrence tree. The axioms of the core theory Tactocc ensure complex
activity occurrences correspond to branches of activity trees. Each complex
activity occurrence has a unique atomic root occurrence and each finite com-
plex activity occurrence has a unique atomic leaf occurrence. A subactivity
occurrence corresponds to a sub-branch of the branch corresponding to the
complex activity occurrence.

3.8 Duration

The core theory for duration essentially adds a metric to the timeline by
mapping every pair of timepoints to a new sort called timeduration that satisfy
the axioms of algebraic fields. All models of this theory are isomorphic to a
projective vector space (since timedurations must also be values for durations
with the timeline’s endpoints at infinity). Of course, the duration of an activity
occurrence is of most interest, and is equal to the duration between the endof
and beginof timepoints of the activity occurrence.

4 Definitional Extensions

As discussed earlier, the set of models for the core theories of PSL are parti-
tioned into equivalence classes defined with respect to the set of invariants of
the models. Each equivalence class in the classification of PSL models is ax-
iomatized within a definitional extension of the PSL Ontology. In this section,
we will highlight the classes of activities in some of the definitional extensions
of the PSL Ontology; in each case we will consider the invariants associated
with the concepts and give examples of process descriptions for activities that
are members of these classes.

Many of the invariants with definitional extensions in the PSL Ontology
are related to the automorphism groups 7 for different substructures of the
models. We will use the following notation for the relevant substructures:
7 An automorphism is a bijection from a structure to itself that preserves the exten-

sions of the relations and functions in the structure. Intuitively, automorphisms
are the symmetries of a structure.

Process Specification Language 15

T is the timeline and F is the structure isomorphic to the extension of the
prior relation. Aut(F) is the group of permutations that map activity occur-
rences only to other activity occurrences that agree on the set of fluents that
hold prior to them. Aut(T) is the group of permutations that map activity
occurrences only to other activity occurrences that agree on their beginof
timepoints.

4.1 Occurrence Constraints

We first consider permutations of activity occurrences that map the prede-
cessor of a legal occurrence of an activity a to other predecessors of legal
occurrences of a in the occurrence tree. This set of permutations forms a
group, which we will refer to as OP (a). Each invariant related to occur-
rence constraints is based on subgroups of this group. For example, if we
consider the activity paint and the occurrence trees in Figure 2, OP (paint)
is the group of permutations on the set that includes the activity occurrences
o1
1, o

2
3, o

2
5, o

4
7, o

2
8, o

4
10.

The most prevalent class of occurrence constraints is the case of Marko-
vian activities, that is, activities whose preconditions depend only on the state
prior to the occurrences (e.g. see Equation 6). The class of Markovian activi-
ties is defined in the definitional extension state precond.def (see Figure 3).
The invariant associated with this extension is the group PF (a), which is
the maximal normal subgroup of Aut(F) that is also a subgroup of OP (a).
If PF (a) = Aut(F), then these permutations preserve the legal occurrences
of an activity, and the activity’s preconditions are strictly Markovian; this is
axiomatized by the markov precond class in Figure 3. If PF (a) is only a sub-
group of Aut(F), then there exist additional nonmarkovian constraints on the
legal occurrences of the activity; this is axiomatized by the partial state class
in Figure 3. If PF (a) is the trivial identity group, then there are no Markovian
constraints on the legal occurrences of the activity; this is axiomatized by the
rigid state class in Figure 3.

Additional relations are defined to capture the action of the automorphism
groups on the models. Two activity occurrences o1, o2 are state equiv iff there
exists a permutation in Aut(F) that maps o1 to o2; the two activity occur-
rences are poss equiv iff there exists a permutation in OP (a) that maps o1 to
o2.

There are other kinds of preconditions that are independent of state. For
example, there may be temporal preconditions, in which the legal occurrences
of the activity depend only on the time at which the activity is to occur
(e.g. Equation 7). The invariant for this extension (time precond.def) in the
PSL Ontology is the group PT (a), which is the maximal normal subgroup of
Aut(T) that is also a subgroup of OP (a). If PT (a) = Aut(T), then all legal
occurrences of the activity are preserved by the permutations in Aut(T), which
is the case with temporal preconditions.

16 Michael Grüninger

(∀o1, o2) state equiv(o1, o2) ≡ (∀f) (prior(f, o1) ≡ prior(f, o2)) (1)

(∀a, o1, o2) poss equiv(a, o1, o2) ≡ (poss(a, o1) ≡ poss(a, o2)) (2)

(∀a) markov precond(a) ≡

((∀o1, o2) state equiv(o1, o2) ⊃ poss equiv(a, o1, o2)) (3)

(∀a) partial state(a) ≡

(∃o1) ((∀o2) state equiv(o1, o2) ⊃ poss equiv(a, o1, o2))

∧(∃o3, o4) state equiv(o3, o4) ∧ ¬poss equiv(a, o3, o4) (4)

(∀a) rigid state(a) ≡

(∀o1)(∃o2) state equiv(o1, o2) ∧ ¬poss equiv(a, o1, o2) (5)

Fig. 3. Classes of activities with state-based preconditions (from the definitional
extension state precond.def).

4.2 Effects

Effects characterize the ways in which activity occurrences change the state
of the world. Such effects may be context-free, so that all occurrences of the
activity change the same states, or they may be constrained by other condi-
tions. The most common constraints are state-based effects that depend on
the context (e.g. Equation 8). However, other kinds of constraints also arise
in practice, such as time-based effects (e.g. Equation 9) and duration-based
effects (e.g. Equation 10).

With respect to effects, activities are classified by the automorphism group
of the structure that specifies which activity occurrences achieve or falsify
a fluent. For example, if permutations of activity occurrences that preserve
state are also automorphisms of this structure, then the effects of the activity
depend only on the state; the associated classes of activities are found in the
definitional extension state effects.def .

4.3 Conditional and Triggered Activities

There are several distinct classes in the PSL Ontology that are based on the re-
lationship between fluents and activity occurrences. For conditional activities,
fluents determine which subactivities occur (e.g. Equation 11). For triggered
activities, fluents determine determine the conditions under which an activity

Process Specification Language 17

Mixing is not performed unless the moulding machine is clean.

(∀o, x) occurrence of(o, mixing(x)) ∧ legal(o) ⊃ prior(clean(x), o) (6)

The pre-heating operation can only be performed on Tuesday or Thursday.

(∀o, x) occurrence of(o, preheat(x)) ∧ legal(o) ⊃

(beginof(o) = Tuesday) ∨ (beginof(o) = Thursday) (7)

If the object is fragile, then it will break when dropped.

(∀o, x) occurrence of(o, drop(x) ∧ prior(fragile(x), o)

⊃ holds(broken(x), o) (8)

If we remove the coffee pot before the brewing activity completes, then the burner
will be wet.

(∀o1, o2, x, y) occurrence of(o1, brew(x, y)) ∧ occurrence of(o2, remove(x, y))

∧before(beginof(o2), beginof(o1)) ⊃ holds(wet(y), o1) (9)

The time on the clock display will change after pressing the button for three seconds.

(∀o, x) occurrence of(o, press(x)) ∧ duration(endof(o), beginof(o)) = 3

⊃ holds(display(x), o) (10)

Within the painting activity, if the surface of the product is rough, then sand the
product.

(∀s, o1, x) occurrence of(o1, paint(x)) ∧ rootocc(o1) = s ∧ (prior(rough(x), s)

⊃ (∃o2) occurrence of(a2, sand(x)) ∧ root occ(o2) = s) (11)

Deliver the product when we have received three orders.

(∀s, x) prior(order quantity(x, 3), s) ⊃

(∃o) occurrence of(o, deliver(x)) ∧ s = root occ(o) (12)

Fig. 4. Examples of process descriptions in PSL associated with occurrence con-
straints, effects, conditional activities, and triggered activities.

must occur (e.g. Equation 12). Triggered activities differ from preconditions,
which only specify the conditions under which an activity may possibly occur.

The automorphism groups for conditional activities consist of permuta-
tions of root occurrences of an activity tree that also preserve the structure
of the minimal activity tree. In particular, if two activity occurrences are
state equiv, then they are the roots of isomorphic minimal activity trees.

The invariant for a triggered activity characterizes which subtrees are ac-
tivity trees by looking at the automorphism groups that preserve occurrences

18 Michael Grüninger

Making the frame involves the cutting and punching in parallel, followed by painting.

(∀o, x) occurrence of(o, make(x)) ⊃ (∃o1, o2, o3) occurrence of(o1, cut(x))

∧occurrence of(o2, punch(x)) ∧ ∧occurrence of(o3, paint(x))

∧min precedes(root occ(o1), root occ(o3))

∧min precedes(root occ(o2), root occ(o3)) (13)

Final assembly of the car consists of installation of either the manual or automatic
transmission.

(∀o, x) occurrence of(o, final(x)) ⊃ (∃o1) subactivity occurrence(o1, o)

∧(occurrence of(o1, manual(x)) ∨ occurrence of(o1, automatic(x))) (14)

If the machine is not ready, then perform the painting before final assembly.

(∀o, o1, o2, x, y) occurrence of(o, assembly(x, y))

∧occurrence of(o1, paint(x)) ∧ occurrence of(o1, final(x))

∧¬prior(ready(y), root occ(o)) ⊃ min precedes(root occ(o1), root occ(o2)) (15)

Fig. 5. Examples of process descriptions in PSL associated with ordering con-
straints.

of the activity. In this way, triggered activities are characterized by mappings
in which permutations that preserve fluents also preserve the existence of
activity trees for the activity.

4.4 Ordering Constraints

One of the most common intuitions about processes is the notion of process
flow, or the specification of some ordering over the subactivities of an activity
(e.g. Equation 13). The orderings themselves may also be nondeterministic.
For example, there could be alternative process plans to produce the same
product depending on the customer, (such as the process description in Equa-
tion 14) or the ordering may depend on state (as in the process description in
Equation 15) Note that this latter constraint is distinct from conditional ac-
tivities, since both painting and final assembly will occur; the nondeterminism
in this case arises from the ordering of the occurrences of these activities.

The automorphism groups in this case consist of permutations of subactiv-
ity occurrences that are also automorphisms of the activity trees considered
as graphs; the corresponding classes of activities are found in the definitional
extension ordering.def .

Process Specification Language 19

5 Summary

Within the increasingly complex environments of enterprise integration, elec-
tronic commerce, and the Semantic Web, where process models are main-
tained in different software applications, standards for the exchange of this
information must address not only the syntax but also the semantics of pro-
cess concepts. PSL draws upon well-known mathematical tools and techniques
to provide a robust semantic foundation for the representation of process in-
formation. This foundation includes first-order theories for concepts together
with complete characterizations of the satisfiability and axiomatizability of
the models of these theories. The PSL Ontology also provides a justification
of the taxonomy of activities by classifying the models with respect to in-
variants. Finally, process descriptions are formally characterized as syntactic
classes of sentences that are satisfied elements of the models.

References

1. Ghallab, M. et al. (1998) PDDL: The Planning Domain Definition Lan-
guage v.2. Technical Report CVC TR-98-003, Yale Center for Computa-
tional Vision and Control.

2. Gruninger, M., and Fox, M.S., (1995), The Role of Competency Ques-
tions in Enterprise Engineering, Benchmarking: Theory and Practice,
Rolstadas, A. (ed). Kluwer Academic Publishers, Boston.

3. Hayes, P. (1996) A Catalog of Temporal Theories. Artificial Intelligence
Technical Report UIUC-BI-AI-96-01, University of Illinois at Urbana-
Champaign.

4. Hendler, J. amd McGuinness, D.L. (2001): DARPA Agent Markup Lan-
guage. IEEE Intelligent Systems, 15:72-73.

5. Lee, J., Gruninger, M., Jin, Y., Malone, T., Tate, A., Yost, G. (1998)
The PIF Process Interchange Format and Framework, Knowledge Engi-
neering Review, 2:1-30.

6. Levesque, H., Reiter, R., Lesperance, Y., Lin, F., and Scherl, R. (1997):
GOLOG: A logic programming language for dynamic domains. Journal
of Logic Programming, 31:92-128.

7. McIlraith, S., Son, T.C. and Zeng, H. (2001) Semantic Web Services,
IEEE Intelligent Systems, Special Issue on the Semantic Web. 16:46–53,
March/April, 2001.

8. Menzel, C. and Gruninger, M. (2001) A formal foundation for process
modeling, Second International Conference on Formal Ontologies in In-
formation Systems, Welty and Smith (eds), 256-269.

9. Pease, A. and Carrico, T.D. Core Plan Representation. Armstrong Lab
Report AL/HR-TP-96-9631, Armstrong Laboratory, US Air Force, Jan-
uary 1997. Object Modeling Working Group.

10. Pinto, J. and Reiter, R. (1993) Temporal reasoning in logic programming:
A case for the situation calculus. Proceedings of the 10th International
Conference on Logic Programming, Budapest, Hungary, June 1993.

20 Michael Grüninger

11. Reiter, R. (2001) Knowledge in Action : Logical Foundations for Speci-
fying and Implementing Dynamical Systems. MIT Press.

12. Sandewall, E. (1994) Features and Fluents. Oxford Science Publications.
13. Schlenoff, C., Gruninger, M., Ciocoiu, M., (1999) The Essence of the Pro-

cess Specification Language, Transactions of the Society for Computer
Simulation vol.16 no.4 (December 1999) pages 204-216.

14. Sowa, J. (2000) Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Brooks/Cole Publishing.

15. Tate, A., Drabble, B., Kirby, R. (1994) O-Plan: An open architecture
for command, planning, and control. In M. Fox and M. Zweben (eds.)
Intelligent Scheduling. Morgan Kaufmann, 1994.

16. Tate, A. (1998), “Roots of SPAR - Shared Planning and Activity Repre-
sentation”, The Knowledge Engineering Review, Vol 13(1), pp. 121-128,
Special Issue on Putting Ontologies to Use (eds. Uschold. M. and Tate,
A.), Cambridge University Press, March 1998.

17. Workflow Management Coalition (1999) Process Definition Meta-Model
and WPDL, WfMC-TC-1016-P v1.1.

