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Abstract

We characterize the models of Asher and Vieu’s first-order
mereotopology that evolved from Clarke’s Calculus of Indi-
viduals in terms of mathematical structures with well-defined
properties: topological spaces, lattices, and graphs. Although
for the theory RT soundness and completeness with respect to
a topological translation of the axioms has been proved, this
provides only sparse insights into the structural properties of
the mereotopological models. We prove that the models of the
subtheory RT− are isomorphic to p-ortholattices (pseudocom-
plemented, orthocomplemented). Combining the advantages
of lattices and graphs, we give a representation theorem for
the finite models of RT−EC and show how to construct finite
models of the full mereotopology. We compare our results to
representations of the Calculus of Individuals and the Region
Connection Calculus (RCC).

1 Introduction
Mereotopological systems have long been considered in
philosophic and logic communities and recently received
attention from a knowledge representation perspective.
Mereotopology is composed of topological (from point-set
topology) notions of connectedness and mereological no-
tions of parthood. Point-set topology (or General Topol-
ogy) relies on the definition of open (and dually closed) sets
and extends standard set-theoretic notions of union, inter-
section, and containment with concepts such as interior, clo-
sure, limit points, neighborhoods, and connectedness.

Uncertainty about differences in mereotopological sys-
tems, in particular about their implicit [inherent] assump-
tions, seem to be a major source of confusion that hinders
forthright application of even well-developed mereotopo-
logical theories. This problem arises in the various theo-
ries for different reasons: some lack any formal represen-
tation, leaving the user unsure about intended interpreta-
tions; others are formalized in first-order logic but lack a
characterization of the models up to isomorphism. This pa-
per focuses on an instance of the latter problem – we an-
alyze the models of Asher and Vieu’s mereotopology RT0
(?) in the style of a representation theorem using struc-
tures from well-understood mathematical disciplines. We
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want to understand what kind of models the axiomatic sys-
tem RT0 describes and what properties these models share.
The goal is to characterize the models of RT0 in terms of
classes of structures defined in topology, lattice theory, and
graph theory and compare the classes to representations of
other mereotopological theories. Although the completeness
and soundness of RT0 has been proven with respect to the in-
tended models defined by RTT over a topology T , this is a
mere rephrasing of the axioms. The proofs show that the
axiomatic system describes exactly the intended models, but
the formulation of the intended models does not reveal struc-
tural properties that can be used to learn about practical ap-
plicability, implicit restrictions, and hidden assumptions of
the theory. [Special emphasis in our work is put on the finite
models, since these are dominant in real-world applications.]

Primary motivation of this work is to give better in-
sight into the axiomatic theory and to uncover problems
and assumptions that users of the ontology should be aware
of. A characterization of the models of the axiomatic the-
ory allows us to reuse knowledge about the mathemati-
cal structures in the mereotopological theory. Afterwards,
we can compare our results to the characterization of the
Region Connection Calculus (RCC), as conducted in (?;
?) which uses the notion of Connection Algebras to describe
the RCC. Besides the characterization and analysis of RT ,
the main contribution of this work is a comparison of the
suitability of different mathematical structures, in particular
topological spaces, graph representations, and lattices, for a
model-theoretic analysis and comparison of mereotopologi-
cal frameworks. In the long-term an exhaustive comparison
of different mereotopological approaches within a strictly
defined mathematical context is desired. It turns out that
lattices and lattices as graphs are best suited because lattices
provide an intuitive way to model parthood relations.

Notice that we are only interested in a rigid mathemati-
cal study to provide the community with a model-theoretic
view on mereotopology for the example of RT0; we do
not argue for or against underlying assumptions of different
mereotopologies.

Serving the growing interesting in formal ontologies and
upper ontologies, this kind of analysis can guide the selec-
tion of a generic axiomatization of mereotopology for inclu-
sion in upper ontologies such as SUMO, DOLCE, and BFO.
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2 The Mereotopology RT of Asher and Vieu
Mereology investigates parthood structures and relative
complementation, dating back to Whitehead (?) and
Leśniewski (?). The first formal specification of extensional
mereology was (?). For an overview of extensional mere-
ology, we invite the reader to consult (?). The primitive re-
lation in mereology is parthood (an entity being part of an-
other) expressed as irreflexive proper parthood, < or PP, or
as reflexive parthood,≤ or P. The latter is usually a standard
partial order that is reflexive, anti-symmetric, and transitive,
coined Ground Mereology M in (?). Moreover, most mere-
ologies define concepts of overlap, union, and intersection
of entities. General sums (fusion), i.e. the union of arbitrar-
ily many individuals, are also widespread. In all mereolog-
ical theories a whole (universe) can be defined as the entity
that everything else is part of. If differences are defined, a
complement exists for every individual relative to the mere-
ological whole. More controversial is whether mereology
should allow atoms, i.e. individuals without proper parts that
are the smallest entities of interest. Some theories are atom-
less while others explicitly force the existence of atoms (?);
mereotopology inherits this controversy: it can be defined
atomless, atomic, or make no assumption about atomism at
all.

Neither topology nor mereology are by themselves pow-
erful enough to express part-whole relations: Connection
does not imply parthood between two individuals and dis-
connection does not prevent parthood as well as mereo-
logical wholes do not imply topological (self-connected)
wholes. To be able to reason about integral, self-connected
individuals, ways to combine mereology with topology are
necessary. The different options to merge the two inde-
pendent theories are used in (?) to classify mereotopolo-
gies. Bridging the gap between mereology and topology
can be achieved by extending mereology with a topolog-
ical primitive as applied in (?; ?; ?). More widespread
is the reverse: assuming topology to be more fundamental
and defining mereology on top of it using only topological
primitives (“Topology as Basis for Mereology”). (?; ?; ?;
?) and the RCC (?; ?) use this method with a connection (or
contact) relation as only primitive and parthood expressed
in terms of connection. A third, less common way to merge
topology and mereology was presented in (?) extending the
mereological framework of (?) by quasi-mereological no-
tions (combining mereology with some topological idea) to
define topological wholeness.

As mentioned before, our focus are first-order
mereotopologies. However, most of these theories either
entirely lack soundness and completeness proofs, e.g. (?;
?; ?), or the proof is based on a rephrased model definition
as in (?). Only the theory of (?), which is unfortunately
limited to planar polygonal mereotopology, provides formal
proofs that exhibit the possible models. For the RCC (?)
the intended models are thoroughly described but the actual
models not yet fully characterized. But to compare different
mereotopologies by their models, we first need to charac-
terize the models only from the axioms (or a definition for
which equivalence to the axioms is proved). Clarke’s theory
has received significant attention, but since some problems

have been identified with it, we focus on Asher and Vieu’s
version of the theory where the completeness and soundness
proof ease the model-theoretic analysis. Notice that Clarke’s
and Asher and Vieu’s theories are more sophisticated that
the RCC which does not distinguish individuals from their
interiors and closures, claiming such distinction superfluous
for spatial reasoning. But contradictory, tangential and
non-tangential parts as well as regular overlap and external
connection which all rely on open and closed properties are
distinguished in RCC.

2.1 Axiomatization RT0

The first-order theory RT0 of (?) uses the connection rela-
tion C as only primitive. The theory is based on Clarke’s
Calculus of Individuals (?; ?), with changes to make the
theory first-order definable: (1) the explicit fusion operator
is eliminated, it is claimed unnecessary; and (2) the con-
cept of weak contact, WCont, is added. To eliminate trivial
models, RT0 requires at least one external connection and
one weak contact (A11, A12). Some ontological and cogni-
tive issues are also addressed, see (?). RT0 follows the strat-
egy called “Topology as Basis for Mereology” for defining
mereotopology and does not contain an explicit mereology.
Consequently, the parthood relation P is defined solely in
terms of the primitive C which limits the whole theory to
the expressiveness of C. For consequences of this kind of
axiomatization, see (?; ?).

To construct models of the theory RT0 the following def-
initions are necessary. Except for WCont, these were al-
ready defined in (?) and are comparable to those of other
mereotopological systems.
(D1) P(x,y) ≡ ∀z [C(z,x)→C(z,y)] (Parthood as reflexive

partial order satisfying the axioms of M)
(D3) O(x,y) ≡ ∃z [P(z,x)∧P(z,y)] (Two individuals over-

lap iff they have a common part)
(D4) EC(x,y)≡C(x,y)∧¬O(x,y) (Two individuals are ex-

ternally connected iff they are connected but share no
common part)

(D6) NT P(x,y)≡ P(x,y)∧¬∃z [EC(z,x)∧EC(z,y)] (Non-
tangential parts do not touch the border of the larger
individuals)

(D8) OP(x)≡ x = i(x) (Open individuals)
(D9) CL(x)≡ x = c(x) (Closed individuals)
(D11) WCont(x,y)≡ ¬C(c(x),c(y))∧∀z [(OP(z) ∧

P(x,z))→C(c(z),y)] (Weak contact requires the clo-
sures of x and y to be disconnected, but any neighbor-
hood containing cl(x) to be connected to y)

The concepts proper part PP (the irreflexive subset of the
extension of parthood, i.e. PP(x,y) ≡ P(x,y)∧ x 6= y), tan-
gential part T P (T P(x,y)≡ P(x,y)∧¬NT P(x,y)), and self-
connectedness CON (see (?)) are defined in RT0, but are ir-
relevant for the model construction, since they are not used
in the axioms. RT0 is then defined by:
(A1) ∀x [C(x,x)] (C reflexive)
(A2) ∀x,y [C(x,y)→C(y,x)] (C symmetric)
(A3) ∀x,y,z [(C(z,x)≡C(z,y))→ x = y] (C idempotent)
(A4) ∃x∀u [C(u,x)] (Universally connected element a∗ = x)
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(A5) ∀x,y∃z∀u [C(u,z)≡ (C(u,x)∨C(u,y))] (Sum for
pairs of elements)

(A6) ∀x,y [O(x,y)→∃z∀u [C(u,z)≡ ∃v(P(v,x)∧P(v,y) ∧
C(v,u))]] (Intersection for pairs of overlapping ele-

ment)
(A7) ∀x [∃y (¬C(y,x)) → ∃z∀u [C(u,z) ≡ ∃v (¬C(v,x) ∧

C(v,u))]] (Complement for elements 6= a∗)
(A8) ∀x∃y∀u [C(u,y)≡ ∃v(NT P(v,x)∧C(v,u))] (Interior

for all elements; the interior y = i(x) is the greatest
non-tangential (not necessarily proper) part y of x)

(A9) c(a∗) = a∗ (Closure c defined as complete function)
(A10) ∀x,y [(OP(x)∧OP(y)∧O(x,y))→ OP(x∩ y)] (The

intersection of open individuals is also open)
(A11) ∃x,y [EC(x,y)] (Existence of two externally con-

nected elements)
(A12) ∃x,y [WCont(x,y)] (Existence of two elements in

weak contact)
(A13) ∀x∃y [P(x,y) ∧ OP(y) ∧ ∀z [(P(x,z) ∧ OP(z)) →

P(y,z)]] (Unique open neighborhood for all elements)
We considered subtheories of the axioms of RT0, which we
refer to as RTC, RT−, and RT−EC. RTC is the topological
core of the theory consisting of axioms A1 to A3. Exten-
sional by A3, RTC corresponds to extensional ground topol-
ogy (T) or Strong Mereotopology (SMT) (?) and to exten-
sional weak contact algebras, satisfying axioms C0 - C3 and
C5e of (?). Hence, C is a contact relation in the sense of (?).
RT− ≡ RT0 \ {A11,A12} excludes the existential axioms
that eliminate trivial models, but has the same structural
properties as RT0. A representation theorem for the mod-
els of RT− elegantly captures important properties of RT0 as
well. Finally, we consider models of RT−EC ≡ RT−∪{A11}
and show how external connections change the representa-
tion as lattices.

2.2 Intended Models RTT

Asher and Vieu provide completeness and soundness proofs
of RT0 with respect to structures RTT that define the intended
models of the mereotopology. Each intended model is build
from a non-empty topological space (X ,T ) with T denot-
ing the set of open sets of the space. Standard topological
definitions of interior int and closure operators cl, open and
closed properties, and∼ as relative complement with respect
to X are assumed. The intended models are then defined as
structures RTT = 〈Y, f ,JK〉1 where the set Y must meet the
conditions (i) to (viii). However, one can easily see that the
conditions (i) to (viii) are a mere rephrasing of A4 to A13 of
RT0 and thus do not help to understand the theory in terms
of well-known structures despite their common-sense moti-
vation. Only the connections structures defined by RTC are
not directly represented by the conditions (i) to (viii).
(i) Y ⊆P(X) and X ∈ Y ; X is the universally connected

individual a∗ required by A4 and all other elements in
a model of RT0 are subsets thereof;

full interiors (ii) and smooth boundaries (iii):
(ii) ∀x ∈ Y (int(x) ∈ Y & int(x) 6= /0& int(x) = int(cl(x)));

requires non-empty interiors for all elements equiva-
lent to A8;

1For definitions of f and JK, see (?)

(iii) ∀x ∈ Y (cl(x) ∈ Y &cl(x) = cl(int(x))); requires clo-
sures for all elements which is implicitly given by D7
as closure of the uniquely identified interiors and com-
plements (by A7 and A8); A9 handles a∗ separately;

(iv) ∀x ∈ Y (int(∼ x) 6= /0→∼ x ∈ Y ); requires unique
complements equivalent to A7;

(v) ∀x,y ∈ Y (int(x∩ y) 6= /0→ (x∩∗ y) ∈ Y ); for pairs of
elements with non-empty mereological intersection an
intersecting element is guaranteed equivalent to A6;

(vi) ∀x,y ∈ Y ((x∪∗ y) ∈ Y ); guarantees the existence of
sums of pairs equivalent to A5;

(vii) ∃x,y ∈ Y ((x∩ y) 6= /0& int(x∩ y) = /0); requires a pair
of externally connected elements equivalent to A11
with def. D4;

(viii) ∃x,y ∈ Y ((cl(x)∩ cl(y)) = /0 & ∀z ∈ Y [(open(z) &
x⊆ z)→ y∩ cl(z) 6= /0]); requires a pair of weakly

connected elements equivalent to A12 with def. D11;
where x ∪∗ y = x ∪ y ∪ int(cl(x ∪ y)) and x ∩∗ y = x ∩ y ∩
cl(int(x∩ y)).

This characterization of the intended models of RT0 is in-
sufficient for understanding properties and structure of the
mereotopological models. The interplay of the conditions
and resulting implicit constraints are not clear. Our goal is
to better understand the models by characterizing them in
the next section as classes of well-understood mathematical
structures.

3 Characterization
This section presents our characterization of the models of
RT0 and subsets thereof in terms of topological spaces, lat-
tices, graphs, and a combination of lattices and graphs. We
are the first to characterize the models of a mereotopologi-
cal or any spatial reasoning framework using all these dif-
ferent structures. Previously, (?) characterized the models
of Clarke’s Calculus of Individuals (?; ?) in terms of lat-
tices. showing that the connection structures defined by a
subset of the axioms of Clarke (axioms A1 to A4) are iso-
morphic to the complete orthocomplemented lattices. To-
gether with an axiom requiring the existence of a com-
mon point of two connected individuals, (?) proved that
the connection structures are equivalent to the complete
Boolean algebras. Since major problems have been ob-
served with Clarke’s Calculus of Individuals, a natural ques-
tion is whether the system RT0 of Asher and Vieu is an
adequate replacement. RT0 heavily relies on the work of
Clarke; but it is not clear how the changes proposed by
Asher and Vieu alter the class of associated models, par-
ticularly in a lattice-theoretic description. A by-product
of our characterization is the extraction of the topological
core of RT0 which is equivalent to a contact algebra (?; ?;
?) and the more restricted definition of a connection struc-
ture (?).

First, we show that contrary to the models of RCC that
are exclusively atomless (?), the theory RT0 allows finite
and infinite models. The proof of lemma 1 constructs finite
models, and then infinite models must automatically exist.
[TODO give reason]
Lemma 1. There exist finite, non-trivial models of RT−,
RT−EC, and RT0.
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Proof. The model M defined by 〈a∗,b〉,〈a∗,c〉 ∈CM (with
all reflexive and symmetric tuples also contained in CM ) sat-
isfies all axioms of RT− and is of finite domain {a∗,b,c}
and hence is a finite model of RT−. The model defined
by 〈a∗,b〉,〈a∗, ib〉,〈a∗,c〉,〈a∗, ic〉,〈b, ib〉,〈c, ic〉,〈b,c〉 ∈CM

(again with all reflexive and symmetric tuples also contained
in CM ) with 〈b,c〉,〈c,b〉 ∈ECM satisfies all axioms of RT−EC
and has a finite domain {a∗,b,c, ib, ic} and thus is a finite
model of RT−EC. In (?) we proved that the Cartesian prod-
uct of a finite model of RT− and a finite model of RT−EC is
always a finite model of RT0 if each is extended by a new
individual serving as suprema. Hence, the product of the
presented models is a finite model of RT0.

3.1 Topological spaces
Trying to characterize the models of RT0 using topological
spaces and the common tool of separation axioms is nat-
ural since the intended models of the theory are defined
over topological spaces. Here we only present the ma-
jor results, see (?) for details. The use of separation ax-
ioms fails but shows parallels to the topological charac-
terizations of the RCC and Boolean Connection Algebras
in general. (?) characterized the models as weakly reg-
ular (a stronger form of semi-regularity) but also showed
that T0, T1 are not forced by the axioms. For a model
of RT0 there always exists an embedding topological space
(X ,T ) over the set X = ΣU =de f

⋃{
Ω[cn]|cn ∈ ΣC

}
and

the topology T = ΣT
U = { /0}∪

{
Ω[cn]|cn ∈ ΣC ∧Σ ` OP(cn)

}
∪

{⋃
Z|Z ⊆

{
Ω[cn]|cn ∈ ΣC ∧Σ ` OP(cn)

}}
that satisfies T0,

but T0 cannot generally be assumed for topological spaces
constructed from models of RT0. For the finite (atomic)
models the embedding space is always reducible to discrete
topologies and hence uninteresting. The infinite models of
RT0 are embeddable in semi-regular spaces (that are T1 but
not necessarily Hausdorff or regular) which follows from the
smooth boundaries condition of RTT forcing all open sets
to be regular open. An equivalent topological property to
capture the full interiors condition was not found (local con-
nectedness fails).
Theorem 1. A model of RT0 with infinite number of individ-
uals can be embedded in a semi-regular topological space.

Proof. See (?).

Notice that this theorem covers both the atomless models
and the models with infinite number of atoms.

3.2 Lattices
The similarity between posets that underlie lattices on the
one side and parthood structures as found in mereology on
the other side hints a characterization of the models of RT0
as lattices using the sum and intersection operations ∪∗ and
∩∗ as join and meet. The empty set which is not part of the
set Y of any mereotopological structure RTT has to be added
as zero element to form a bounded lattice.
Proposition 1. A model M of RTT can be represented as
lattice (algebraic structure) L M = (Y ∪ /0,∪∗,∩∗) over the
partial order PM : if 〈x,y〉 ∈ PM then x≤L M y.

(a) lattice L6 (b) pentagon sublattice N5

Figure 1: Six element sublattice contained in every lattice
L M and one possible pentagon sublattice

The lattice is uniquely defined for any model of RT−,
RT−EC, and RT0 because it is only defined by a model’s part-
hood extension. But a particular lattice does not necessarily
represent a unique model since the extension of ECM is not
represented in the lattice. Here we only present the main re-
sults of the lattice characterization, see (?) for details. We
use standard lattice concepts (e.g. unicomplementation and
pseudocomplementation) from (?), supplemented by semi-
modularity (?), and orthocomplementation and orthomodu-
larity (?) properties for the characterization. Using lattices
we give a representation theorem for the models of RT−.

One important observation is the following lemma 2
(caused by A11) which results in a special 6-element sub-
lattice L6 for every model of RTT (lemma 3).
Lemma 2. In any model of RT−EC or RT0 two non-open, non-
intersecting but connected individuals must exist.
Proof. See appendix.
Lemma 3. Every model M of RTT entails the existence of a
6-element sublattice L6 of L M = (Y ∪ /0,∩∗,∪∗, /0,a∗) with
following properties:
(1) L6 has set Y ′ = {a,b1,b2,c1,c2, /0} ⊆ Y M ;
(2) for n,m ∈ {1,2}, a = bn∪∗ cm is the supremum of L6;
(3) for n,m ∈ {1,2}, /0 = bn∩∗ cm is the infimum of L6;
(4) b1∩∗ b2 = b2 and c1∩∗ c2 = c2;
(5) b1∪∗ b2 = b1 and c1∪∗ c2 = c1;
(6) a∪∗ x = a and a∩∗ x = x for all x ∈ Y ′;
(7) /0∪∗ x = x and /0∩∗ x = /0 for all x ∈ Y ′.
Proof. See appendix.
By removing an arbitrary element from {b1,c1,b2,c2} of
L6 we obtain a sublattice L5 that is still closed under join
and meet and is a pentagon N5, compare figure 3.2. With
distributivity requiring modularity which is equivalent to the
absence of pentagons as sublattices, we derive following
corollary.
Corollary 1. No lattice associated with a model of RT0 or
RT−EC is distributive.

Notice that this corollary does not apply to models of
RT−. This result strictly separates the models of RT0 from
those of the RCC and Clarke’s system. (?; ?) found models
of the RCC representable as inexhaustible (atomless) pseu-
docomplemented distributive lattices and models of the Cal-
culus of Individuals were in (?) shown to be isomorphic to
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complete atomless Boolean algebras that are distributive lat-
tices.

However, for the models of RT− we prove join- and meet-
pseudocomplementedness as well as orthocomplemented-
ness (using the topological complement as orthocomple-
ment) and that the intersection of these classes of lattices
is an isomorphic characterization of the models of RT−.
Theorem 2. (Representation Theorem for RT−). The lat-
tices arising from models of RT− are isomorphic to doubly
pseudocomplemented ortholattices (p-ortholattices).

Proof. See appendix.

The models of RT and RT−EC are then proper subsets of
the p-ortholattices that are not atomistic, not semimodular,
not orthomodular, nor uniquely complemented by the ex-
istence of a sublattice L6 and thus N5 in the resulting lat-
tices. External connection relations are not expressed in the
lattice, hence lattices alone fail to characterize models of
RT−EC and of the full theory RT0. Nevertheless, the above
representation is already helpful, since only the trivial mod-
els are not yet excluded. All properties of join- and meet-
pseudocomplemented and orthocomplemented lattices can
be directly applied to the models of the mereotopology.

3.3 Graphs
To avoid neglecting the extension ECM , we can represent a
model M of RT0 as graph G(M ) where the individuals of
the model are vertices and the dyadic primitive relation C is
the adjacency relation of the graph.
Proposition 2. A model M of (a subset of) RT0 has a graph
representation G(M ) = (V,E) where VG = Y M and xy ∈
EG ⇐⇒ 〈x,y〉 ∈CM ⇐⇒ JxKg∩ JyKg 6= /0.

If we take as subset the theory RTC, the models can be
captured by the absence of true twins in their graphs. This
characterization as graphs without true twins generalizes to
connection structures. Notice although theorem 3 is not re-
stricted to finite (or atomic) models of RTC, only for the finite
models of RTC is the resulting graph finite and simple.
Definition 1. Two vertices x,y ∈V (G) are true (false) twins
in a graph G iff N[x] = N[y] (N(x) = N(y)).
Theorem 3. (Representation Theorem for RTC). The
graph representations G(M ) of models M of RTC are iso-
morphic to the graphs that have no true twins.

Proof. See appendix.

A more restricted class of graphs can be defined by a ver-
tex ordering called maximum neighborhood inclusion order-
ing (mnio) that is a special case of a maximum neighborhood
ordering defining dually chordal graphs (?). Moreover, the
graphs with mnio are always free of true and false twins. For
definition of an mnio and proofs see (?) where every graph
associated to a model of RT yields an mnio and therefore is
dually chordal and twin-free. Although mnios capture im-
portant properties of parthood hierarchies, they are still not
specific enough so that all graphs that yield an mnio are mod-
els of RT− or even RT .

3.4 Lattices as Graphs
The pure lattice-theoretic representation does not account
for external connection. To overcome this, we combine the
advantages of the lattice and graph representations to de-
fine graphs over lattice structures. Remember that the lat-
tices nicely capture parthood structures and complementa-
tion whereas the graphs are able to represent full models of
RT0 and RT−EC. For a p-ortholattice we already know there
exists a model of RT−, now the representation of such lattice
as graph allows us to model external connection.
Proposition 3. Every p-ortholattice L over a set of ele-
ments Y , has a representation as undirected graph GL =
(V,E) with V ∼= Y and x,y,z ∈ Y [z≤ x∧ z≤ y] ⇐⇒ xy ∈
E(GL ). GL is finite and simple if L is finite.

We observed a correlation of orthocomplements in the lat-
tices with connectedness in the models that leads to a repre-
sentation theorem for the finite models of RT−EC. We must
restrict the theorem to the finite models since our proofs rely
on the lattices being atomic. [TODO explain why only finite
models].
Theorem 4. (Representation Theorem for finite models
of RT−EC). Each finite not unicomplemented p-ortholattice
L represented as graph GL extended by the non-empty set
EEC =

{
xy|y 6≤ x⊥

}
\E(GL ) to a graph (VGL ,EGL ∪EEC)

is isomorphic to a finite model of RT−EC.

Proof. See appendix.

As by-product, we learn that the finite models are a proper
subset of Clarke’s contact algebras characterized in (?) as
complete ortholattices.

4 Discussion
We used three kinds of mathematical structure to character-
ize models of (subsets of) RT0. The results using topologi-
cal spaces were sparse, it especially fails to characterize the
finite models beyond discrete topologies. If we represent fi-
nite models by infinite point sets, the resulting spaces are not
even T0 and hence from a topological stance uninteresting.
If we model the finite models by finite point sets, we reduce
them to trivial discrete topology.

The lattice-theoretic approach was more fruitful; charac-
teristic properties of the models of RT− can be captured
solely by orthocomplementation and pseudocomplementa-
tion which together give an isomorphic description of the
models of RT− as p-ortholattices. However, there was no
room for the distinctive mereotopological concepts of ex-
ternal connection and weak contact; lattices alone cannot
account for A12 and A13. The existence of external con-
nections prohibits unicomplemented and any kind of mod-
ular lattices from representing models of RT−EC. The lat-
tices representing model of RT0 are strictly not unicomple-
mented. Hereby, the models are delimited from those of
the Calculus of Individuals and of the RCC. The former
were characterized as Boolean lattices which are equiva-
lent to the uniquely complemented distributive pseudocom-
plemented lattices (distributive pseudocomplemented is not
enough, this class contains Heyting and Stone lattices as
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well) and from inexhaustible (corresponds to atomless) dis-
tributive pseudocomplemented lattices models of the RCC
can be constructed.2 Both theories have models with dis-
tributive, unicomplemented lattices. This is partly caused
in Clarke’s system by the error in the definition of external
connection that maps it to overlap and in RCC by the lack
of any distinction between open and closed elements as sep-
arate individuals of the models. This simplification in the
RCC sacrifices a higher expressiveness offered by the sys-
tem RT0. Empirical approaches will be necessary to evaluate
in which cases such simplification is acceptable and which
applications or domains require the higher expressiveness of
Asher and Vieu’s theory.

A third approach represents the models uniquely as undi-
rected graphs based on the single dyadic primitive C. We
characterized RTC and the more generic connection struc-
tures as twin-free graphs. However, for this kind of twin-
freeness no characteristic properties are known in graph-
theory. In (?) we further defined a new vertex ordering
called maximum neighborhood inclusion order (mnio) and
demonstrated that this ordering defines a class of graphs that
includes all graphs of RT−EC, and itself is a proper subset of
the dually chordal graphs. These orderings are somewhat
characteristic for the graphs of RT−EC but not all properties
defined by the axioms of RT0 are captured, especially the ex-
istence of sums, intersections, and interiors is not properly
translated to graphs withs mnios. Therefore mnios also fail
to characterize the models of RT0 up to isomorphism. Nev-
ertheless, the graph-theoretic characterization gives us valu-
able insight into the models of the mereotopology and their
substructures and we collected in (?) some graph-theoretic
properties that might generalize to other mereotopological
theories.

Bounded lattices naturally capture the existence of sums
and intersections of pairs of elements as well as the essen-
tial parthood order of mereological theories, while graphs
are capable of fully representing models of RT0. This led
to a full characterization of the finite models of RT−EC in
terms of graphs of lattices: every finite not unicomple-
mented p-ortholattice L uniquely defines a graph GL that
is equivalent to a finite model M of RT−EC where 〈x,y〉 ∈
OM ⇐⇒ ∃z [z≤ x∧ z≤ y∧ z 6= /0] ⇐⇒ xy ∈ E(GL ) and
〈x,y〉 ∈ ECM ⇐⇒

{
xy ∈

(
E(GL

EC)\E(GL )
)
∧ y 6≤ x⊥

}
.

These constructs maintain ortho- and pseudocomplementa-
tion while uniquely extending the graphs to twin-free graphs
with non-empty extensions ECM .

In a final step conducted in (?) finite models of RT0 with
weak contacts were constructed as direct products of finite
p-ortholattices, see the proof of lemma 1 for an example.
The product of two finite p-ortholattices of which at least is
not unicomplemented, each extended them by separate clo-
sures of their suprema, is a (finite) model of RT . The di-
rection that any model of RT can be obtained in a similar
fashion is still open, leading to a representation theorem of
the models of full RT0. Although such a theorem is desired,
we think that it can give little extra insight into the models of

2A full representation theorem for the models of RCC is still
outstanding, but we expect all models of the RCC to be distributive.

Figure 2: Asher and Vieu’s mereotopology, Clarke’s Cal-
culus of Individuals, and the RCC as subclasses of lattices.
There also exist models of RCC that are the atomless dis-
tributive pseudocomplemented lattices (but not representa-
tion theorem exists yet), the models of the Calculus of Indi-
viduals are the distributive ortholattices, and the models of
RT−EC are the not-unicomplemented, pseudocomplemented
ortholattices.

RT0. The representation theorem for RT− is more important
and characteristic for the mereotopology. Through the given
characterization it is now easy to construct p-ortholattices
that correspond to models and even more importantly, we
can identify the extensions of all mereotopological relations
from the lattice alone. Orthocomplements in the lattices map
to complements in the models, the join and meet of pairs in
the lattice represent the unique sum and intersection in the
corresponding model. The closure and interiors are equiv-
alent to the meet- and join-pseudocomplements of the or-
thocomplement. Overlap relations produce a meet distinct
from the empty set and external connections for an element
are identified by all elements not part of its orthocomple-
ment that the element itself is not connected to by any other
means.

An open question for Asher and Vieu’s mereotopology is
whether the infinite models always give complete lattices. 3

If not, the theory RT0 actually weakens Clarke’s unrestricted
fusion axiom. Otherwise, we obtain a proof that the unre-
stricted fusion can be replaced lossless by the sum axiom
A5 without impacting the infinite models.

Overall, the paper outlines a methodology for characteriz-
ing models of mereotopologies to enable a model-theoretic
comparison of mereotopologies in order to understand dif-
ferences and commonalities between different axiomatiza-
tions. The lattice-based approach turned out most promising
since it captures essential mereological and topological con-
cepts such as parthood and complements. All mereotopo-
logical theories using a single primitive can be also repre-
sented as graphs of lattices as demonstrated. For the fu-
ture, we want to analyze the system of (?) that explicitly
distinguishes a topological (simple region) and a mereolog-
ical primitive (parthood) and comprises a notion of con-
vexity. Other ontologies not yet fully treated in a model-
theoretic are the RCC and the mereotopology of (?). On
the reverse one can choose a promising class of lattices and
show whether it yields useful mereotopological systems -

3For the RCC there is no reason why non-complete lattices can-
not represent models.
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either generic or limited to a certain application domain.
The set of potential candidates identified in (?) include
semimodular lattices, geometric lattices, the full class of p-
ortholattices, Stone lattices, Heyting lattices (compare (?)),
the full class of pseudocomplemented distributive lattices,
and - more generic - pseudocomplemented or orthocomple-
mented lattices.

Appendix
For some of the proofs we need proposition 4 which is a con-
sequence of the definition of PP as irreflexive partial order.
Proposition 4. For x,y∈Y M in a model M of RT0, 〈x,y〉 ∈
PPM iff N[x]⊂N[y] holds in the representing graph G(M ).

Proof for lemma 2
Proof. Condition (vii) of RTT requires two elements x,y ∈Y
to share a point, but no interior point ((note that int(x∩ y) =
int(x)∩ int(y))): x∩y 6= /0∧ int(x∩y) = /0. Thus x and y share
only boundary points. If w.l.g. x is open, i.e. x = int(x), it
cannot contain any boundary points to share in an external
connection. Thus for some x,y to be externally connected, x
and y must be non-open (but not necessarily closed). Then x
and y cannot intersection in a common part, since this com-
mon part would have a non-empty interior (by condition (ii)
of RTT ) and thus violate A11 or D4 in the equivalent model
of RT0 or RT−EC. �

Proof for lemma 3
Proof. Since the axioms force the existence of a pair of ex-
ternally connected individuals which are non-open. Let us
call these b1 and c1. Because of their non-openness, two
open regions b2 = int(b1) and c2 = int(c1) must exist as in-
teriors according to (ii) of RTT . These regions b2 and c2 are
part of and connected to the element they are interior of, b1
and c1, respectively. b2 and c2 are not connected to each
other in order to satisfy the condition of external connection
for b1 and c1 (see D4 or (vii) of RTT ). This set of regions Y ′
with a = b1∪∗ c1 (for a = a∗ it is actually the smallest model
allowed by RT−EC) together with the empty set forms a sublat-
tice with a as supremum, two branches consisting of b1 and
b2 = int(b1) respectively c1 and c2 = int(c1), and the zero
element /0. Any model of RTT contains at least these ele-
ments. If the lattice contains additional elements, L6 always
forms a sublattice of it, since the elements a,b1,b2,c1,c2, /0
are closed under ∪∗ and ∩∗. Hence the axioms force any
model of RT0 or RT−EC to have L6 as sublattice. �

Proof outline for theorem 2
Definition 2. (?; ?) Let L be a lattice with infimum 0 and
supremum 1.
An element a′ is a meet-pseudocomplement of a ∈ L
iff a ∧ a′ = 0 and ∀x(a∧ x = 0⇒ x≤ a′); a′ is a join-
pseudocomplement of a ∈ L if and only if a∨ a′ = 1 and
∀x(a∨ x = 1⇒ x≥ a′).
Claim 1. Any lattice L constructed from a model of RT0 is
meet- and join-pseudocomplemented.

Proof. We know every such lattice L is complemented:
for every a ∈ Y ∪ /0 there exists a complement a′ so that
a ∧ a′ = 0 and a ∨ a′ = 1. In (?), we proved that for a
complement a′ of a, int(a′) and cl(a′) are also comple-
ments of a. Now we claim: (i) every element b with b >
cl(a′) has a non-zero meet with a and thus cannot be meet-
pseudocomplement of a and every element c with c < int(a′)
has a join with a that is not the supremum; (ii) every element
b with a∧b = 0 or a∨b = 1 satisfies the condition b≤ cl(a′)
or b≥ int(a′), respectively.
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(i) Assume b with b > cl(a′) and b∧ a = 0 exists. Then
the extension of C in which b participates must subsume the
extension of C in which cl(a′) participates. If the exten-
sions of O where b or cl(a′) participate are the same then
either cl(a′) is not closed (b has an additional another exter-
nal connection) or b and cl(a′) have the same extensions of
C and are by A3 identical. If the extension of O in which b
participates is strictly greater than that of cl(a′), then b must
overlap with some part of a and b∧ a = 0 does not longer
hold. In both cases we derive a contradiction.
(ii) From (i) we know there exists no such b with b > cl(a′)
so that b∧ a = 0. Now we prove that no other element b
exists with b∧ a = 0 that is incomparable to cl(a′). No-
tice that every element b is either comparable to a or −a,
see proposition 4. Assume a′ to be orthocomplement of a
(we later prove that such orthocomplement always exists).
If b is comparable to a then obviously a∧ b = 0 does not
hold. Hence b must be comparable to −a. The trivial case
is cl(a′) = −a. Otherwise the sum b∪∗ cl(a′) overlaps in
some part(s) with a (cl(a′) is already maximally connected
to a without overlap, see the argument for (i)), which in turn
requires one part (either of b or cl(a′), or of a third element)
to overlap with a. That would mean either b or cl(a′) over-
laps with a and a∧ b = 0 or a∧ cl(a′) = 0 does not hold.
Hence no such b can exist. From (i) and (ii) together with
the fact that cl(a′) is also a complement of a, cl(a′) must be
the meet-pseudocomplement of a.
The proof for the join-pseudocomplements is analogous. �
Definition 3. (?) A bounded lattice is an ortholattice (or-
thocomplemented lattice) iff there exists a unary operation
⊥ : L→ L so that:
(1) ∀x

[
x = x⊥⊥

]
(involution law)

(2) ∀x
[
x∧ x⊥ =⊥

]
(complement law; or ∀x

[
x∨ x⊥ =>

]
)

(3) ∀x,y
[
x≤ y≡ x⊥ ≥ y⊥

]
(order-reversing law).

Claim 2. Any lattice L constructed from a model of RT0 is
an ortholattice with the topological complement ∼ as ortho-
complementation operation.

Proof. We check conditions (1) to (3) for the opera-
tion ∼, choosing ∼ a∗ = /0 and ∼ /0 = a∗ to make ∼ a
complete function on the set Y ∪ /0. Property (1) and (2)
( x∩∗ ∼ x = /0) hold from the set-theoretic definition of
topological complements. To prove (3), consider x and
y as sets of points: x ≤ y (in the lattice) iff x ⊆ y. If
x = y then ∼ x =∼ y and (3) holds trivially. Hence as-
sume x ⊂ y, then all the points in y \ x (non-empty) must
be part of the complement of x, i.e. y \ x ⊆∼ x. Since all
points that are both in x and y are in neither complement
and all points in neither set are in both complements, ∼ y
must be a proper subset of ∼ x, i.e. ∼ x = a∗ \ (x∩ y) and
∼ y = a∗ \ (x∩ y)\ (y\ x). a∗ \ (x∩ y)\ (y\ x)⊆ a∗ \ (x∩ y)
follows and with y\ x distinct from x∩ y and assumed to be
non-empty: a∗\(x∩y)\(y\x)⊂ a∗\(x∩y). Thus∼ y <∼ x,
satisfying the order-reversing law (3). �

Proof outline for theorem 3
Proof. If a graph G(M ) has two vertices x,y ∈ V (G(M ))
with N[x] = N[y], then A3 is violated unless x = y. On the
reverse, a graph without true twins directly satisfies A3. �

Proof outline for theorem 4
Proof. Notice that for every p-ortholattice L the graph
GL is uniquely defined because of the unique definitions
of V (GL ) and E(GL ). Thus the graph GL is uniquely
defined for every model of RT−EC. Moreover, the lattices
representing models of RT−EC are not unicomplemented p-
ortholattices, where a finite model M of RT−EC gives a finite
not-unicomplemented p-ortholattice L which again gives a
finite graph GL with non-empty extension EEC. Thus every
finite model of RT−EC results in a graph GL as required by
the theorem.

The reverse: any graph GL
EC =

(
V (GL ),E(GL )∪EEC

)
constructed from a not unicomplemented p-ortholattice
gives a model M of RT−EC. The extension EEC ={

xy|y 6≤ x⊥
}
\E(GL ) is non-empty (claim 1) and thus satis-

fies A11. Afterwards we show that GL
EC satisfies the axioms

A1 to A10 and A13 (A1, A2, A4, A7 and A9 are straightfor-
wards and omitted here).
Claim 1. EEC =

{
xy|y 6≤ x⊥

}
\E(GL ) is non-empty.

Assume the contrary, i.e. that EEC = {} for a graph GL .
Then it holds that

{
xy|y 6≤ x⊥

}
⊆ E(GL ). Additionally,

E(GL ) ⊆
{

xy|y 6≤ x⊥
}

because no individual can be con-
nected to its complement or parts thereof. But then the graph
representation of each element x has a unique neighborhood
N[x] =

{
xy|y 6≤ x⊥

}
just from the parthood relation. Hence

the underlying lattice is unicomplemented.
Claim 2. GL

EC = GL ∪
{

xy|y 6≤ x⊥
}

satisfies A3.
Assume there exist two elements x,y ∈V (GL

EC) such that
N[x] = N[y]. Since xx⊥ /∈ E and thus x⊥ /∈ N[x] it follows
that x⊥ /∈ N[y]. The same for y⊥, i.e. y⊥ /∈ N[x]. Then by
the definition of GL

EC, a contradiction arises because both
y⊥ ≤ x⊥ and x⊥ ≤ y⊥ must hold. Hence no two vertices
x,y ∈V (GL

EC) with N[x] = N[y] can exist.
Claim 3. The extension PM of the parthood relation in M
is given by the lattice L , i.e. x≤ y ⇐⇒ 〈x,y〉 ∈ PM .

Assume x≤ y for some pair x,y. That means N[x]⊆ N[y].
Whenever a third element z is connected to x, it will also be
connected to y, since by the order-reversing law, y⊥ ≤ x⊥
holds and if z 6≤ x⊥ then z 6≤ y⊥. So N[x]⊆ N[y] is preserved
in GL

EC (when adding EEC) and thus 〈x,y〉 ∈ PM . On the
reverse, if 〈x,y〉 ∈ PM in a model of RT−EC, then N[x]⊆ N[y]
in the graph GL

EC. If now N[x] 6⊆ N[y] in GL , then x 6≤ y and
y⊥ 6≤ x⊥. Some z exists with 〈x,z〉 ∈ EEC but 〈y,z〉 /∈ EEC.
Then either y⊥ > x⊥ or y⊥ and x⊥ are incomparable with
the consequence of z ∈ N[x] but z /∈ N[y] or y⊥ ∈ N[x] but
y⊥ /∈ N[y], respectively.
Claim 4. GL

EC = GL ∪
{

xy|y 6≤ x⊥
}

satisfies A5.
Let z ∈ V (GL ) be the sum element of some pair of ele-

ments x,y ∈ V (GL ) with z = x∪∗ y ≥ x,y. We prove each
direction of the equivalence in A5 individually.

(a) ∃v [(C(v,x)∨C(v,y))→C(v,z)]
Since z ≥ x, either z = x and zv ∈ E ⇐⇒ xv ∈ E or z > x
and by proposition 4 xv ∈ E⇒ zv ∈ E; the same for y.

(b) ∃v [(C(v,x)∨C(v,y))←C(v,z)]
Assume there exists an element v s.t. zv ∈ E but xv,yv /∈ E.



To appear, KR-08 9

Let v be comparable to z but not to x and y. This can
only occur if v < z and v is disjoint with both x and y. If
there is a common proper part u, i.e. w.l.g. u < v,x then
v and x are connected. If no such u exists, there exists at
least three atoms in this subbranch of the lattice. But then
the lattice is not pseudocomplemented, since dual-atoms
not comparable to these atoms would not have unique join-
pseudocomplements. Otherwise if v is comparable to z, it is
comparable to at least one of x and y.
If v is not comparable to z, then v is comparable to z⊥, i.e. ei-
ther v≤ z⊥ or v > z⊥. In the first case v cannot be connected
to z by definition contrary to the assumption. In the latter
case v is comparable to one of x⊥ and y⊥. If v would be
incomparable to both, there must exist three distinct dual-
atoms in this subbranch of the lattice and the lattice is not
meet-pseudocomplemented. If v is comparable to only one
of them, i.e. w.l.g. to x then yv ∈ E since v 6≤ y⊥. If v is
comparable to x and y and v < x⊥,y⊥ then v = x∩∗ y and
thus v⊥ = x∪∗ y by the order-reversing law. Hence z is not
the sum of x and y. If v > x⊥,y⊥ (note that if x and y are
comparable with each other, they are ordered and z is not
the sum of x and y) then v > z⊥ and xv,yv,zv /∈ E would
follow contrary to our assumption that zv ∈ E.
Claim 5. GL

EC = GL ∪
{

xy|y 6≤ x⊥
}

satisfies A6.
By claim 3 the parthood and hence the overlap relation is

predefined by the lattice. We show that if the intersection z =
x∩∗ y given by the lattice L with z < x,y has an additional
element v∈N(z), then v∈N(x),N(y): assume v with zv∈E,
then v 6≤ z⊥. Since z⊥ ≥ x⊥,y⊥ it follows that v > x⊥,y⊥ or
v is incomparable to x⊥,y⊥. The latter case also implies
v 6≤ x⊥ and v 6≤ x⊥. Thus in any case, vx,vy ∈ E.
Claim 6. GL

EC = GL ∪
{

xy|y 6≤ x⊥
}

satisfies A8.
For any x take the greatest open element y with the same

overlap extension and y ≤ x. Such an element must exist,
since the underlying lattices are atomic: any atom y < x sat-
isfies A8 because it is not externally connected: its ortho-
complement y⊥ is a dual-atom (by orthocomplementation)
and ∀z

[
z 6> y→ y⊥ ≥ z

]
and for all such z, yz /∈ E follows.

Claim 7. GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satisfies A10.

By D8 〈x〉OPM for a model M associated to
GL

EC iff
{

xv|v 6≤ x⊥
}

= {} (similar for y). Then
¬∃v

[
v≤ x⊥,y⊥|xv ∈ EEC or yv ∈ EEC

]
and with z = x ∩∗

y ≤ x,y, {〈z,v〉 ∈ EEC} ⊆ {〈x,v〉 ∈ EEC} ,{〈y,v〉 ∈ EEC} ⊆
{} follows for all v ∈ Y , i.e. z is not externally connected.
Then ¬∃v

[
v≤ z⊥|zv ∈ E

]
and z ∈ OPM because zz⊥ /∈ E

and z⊥ ≥ x⊥,y⊥. If z = x (or z = y) then y < x (or x < y) and
again z ∈ OPM .
Claim 8. GL

EC = GL ∪
{

xy|y 6≤ x⊥
}

satisfies A13.
A13 is violated iff there exist two incomparable open ele-

ments y and z with y,z≥ x. Notice that all of x,y,z are related
to the same set of elements by an overlap relation, otherwise
this branch of the lattice contains two atoms and the lattice
would not be pseudocomplemented. Then, since y and z are
not externally connected N[y] = N[z] follows which contra-
dicts twin-freeness of GL

EC. Hence, A13 is satisfied in every
graph GL

EC.
All claims together prove the representation theorem. �


