
Towards Axiomatizing the Semantics of UML Activity Diagrams: A
Situation-Calculus Perspective

Xing Tan
Semantic Technologies Laboratory

University of Toronto
Email: xtan@mie.utoronto.ca

Michael Gruninger
Semantic Technologies Laboratory

University of Toronto
Email: gruninger@mie.utoronto.ca

Abstract—In this paper, the UML activity diagrams are first
defined graph-theoretically, with an adoption of the concepts of
Petri nets tokens. The semantics of activity diagrams is further
axiomatized as a logical action theory called SCAD. Example
applications of SCAD are also given.

Keywords-UML Activity Diagrams; Situation Calculus On-
tology

I. INTRODUCTION

The Unified Modeling Language (UML) activity diagrams
are designed for graphical specifications of dynamical as-
pects of systems. They have been widely used to model work
flows of, e.g., business processes and software systems. For
each graphical notation of activity diagrams, only a textual
description is provided by the Object Management Group
(OMG) to define its syntax and semantics [3].

In this paper, we start by providing a graph-theoretic defi-
nition for the activity diagrams and formal characterizations
of activity diagram dynamics through adopting the concepts
of Petri nets tokens. We move on to propose an ontology
of activity diagrams called SCAD, standing for Situation-
Calculus action theory for Activity Diagram; whereas sit-
uation calculus (Reiter’s variety, see [2]) is a second-order
logic language that provides a rigorous paradigm for axiom-
atizations of dynamical systems.

SCAD contains a set of actions, corresponding to the
firing of diagram nodes, and a set of function fluents,
corresponding to the number of tokens at diagrams nodes,
which are subject to change upon firing actions. The paper
also covers two example SCAD applications: one, important
mathematical properties of activity diagrams are further
axiomatized in SCAD. Consequently, we show that the
reachability problem is PSPACE-complete in a subclass of
SCAD; two, an example diagram is presented, where the
projection problem is investigated in particular.

II. UML ACTIVITY DIAGRAMS

In this section, graph-theoretic definitions to describe
UML activity diagrams are introduced first, and the concept
of markings to capture the dynamics of activity diagrams
are presented next.

Definition 1: An UML activity diagram is a pair
(N,E), where N is a finite set and E is a binary relation on
N . The elements in N are called nodes. Each node belongs
to one and only one of the following types: Ini, Final,
Branch, Merge, Fork, Join, or Action. The elements in
E are called edges. The edge set E consists of ordered pairs
of nodes. That is, an edge is a set {u, v}, where u, v ∈ N
and u 6= v. By convention, we use the notation (u, v) for an
edge, rather than the set notation {u, v}.

If (u, v) is an edge in an activity diagram, we say that
(u, v) is incident from or leaves node u and is incident
to or enters node v. Given a node u ∈ N , the set
•u = {v|(v, u) ∈ E} is the pre-set of u, where each v
is the input of u, and the set u• = {v|(v, u) ∈ E} is the
post-set of u, where each v is the output of u. It is required
that 1

|•u|

 = 0 if n is the Ini node
= 1 if n is Branch, Fork, Action, or Final
= 2 if n is a Merge, or a Join node

and

|u•|

 = 0 if n is the Final node
= 1 if n is Merge,Join, Action or Ini
= 2 if n is a Branch , or a Fork node

The concept of tokens and its firing is adopted from Petri
nets. In a Petri-net, nodes of places contain tokens whereas
firing of a transition node make changes to the number of
tokens in the places that enter, or leave the transition node.
As defined below, a node in an activity diagram by itself
maintains tokens and can fire as long as it contains at least
one token. In addition, the left (or right) input of a Join
node accepts left (or right) tokens and, intuitively, one left
token and one right token will be counted as a full token
for the Join node.

Definition 2: A marking of a diagram (N,E) is a map-
ping in the form MK : N → N , to indicate the distribution
of tokens on the nodes of the diagram; it can be represented
as an vector MK(n1), . . . ,MK(nm) where n1, . . . , nm is

1In general, the in-degrees of Merge and Join, and the out-degrees of
Branch and Fork, all can be integers greater than 2.

an enumeration of the node set N and for all i such that
1 ≤ i ≤ m, MK(ni) tokens are assigned to node ni.
A node n is marked at the marking MK if MK(n) > 0.
A marked node u is also enabled and is accepted by every
node v ∈ u•. The firing of an enabled node u at MK leads
to the successor marking MK ′ (Written as MK

u=⇒ MK ′).
More precisely,

1) if u is a Branch node, then for every node n ∈ N ,

MK ′(n) =

 MK(n)− 1 if n = u
{MK(n) + 1,MK(n)} if n accepts u
MK(n) otherwise

and we also have,
∑

ni∈u• MK(ni) = 1;
2) if u is a non-Branch node, then for every node n ∈ N ,

MK ′(n) =

 MK(n)− 1 if n = u
MK(n) + 1 if n accepts u
MK(n) otherwise

In other words, after the firing of u, a token is removed
from u and a token is added to the only node (if u is
of type Ini, Action, Merge, Join), each node (if u is
of type Fork), one and only one node (if u is of type
Branch), in the post-set of u. There is no need to fire
a node with type Final;

3) (Exception of Join) if a token fired by u is ac-
cepted by the left (right) in-edge of a Join node n,
then MKleft(n) (MKright(n)) is increased by 1.
MKleft(n) = 1 and MKright(n) = 1 function as one
full token at n, i.e., MK(n) = 1.

The firing sequence σ = n1, ..., nm is a sequence of nodes
in N . For particular σ and MK, σ is legal at MK if
there are marking sequence MK0,MK1, ...,MKm such
that MK = MK0, M0

n1=⇒ MK1, ..., MKm−1
nm=⇒ MKm

(written as MK
σ=⇒ MKm).

The reachability problem for an (N,E, MK0) is to
decide, for some marking MK ′, if there exists a firing
sequence σ such that MK0

σ=⇒ MK ′. An instance
(N,K,MK0) is k-bounded if the number of tokens of any
node n ∈ N at any MK in the reachability set is bounded
by k.

III. SITUATION CALCULUS

The situation calculus is a logical language for repre-
senting changes upon actions in a dynamical domain. The
language L of situation calculus as stated by [2] is a second-
order many-sorted language with equality.

Three disjoint sorts: action, situation, object (for every-
thing else in the specified domain) are included in the
language L. For example, rain denotes the act of raining,
and putdown(x, y) denotes the act of object x putdown
y on the ground. A situation characterizes a sequence of
actions in the domain. The constant situation S0 is to
denote the empty sequence of actions, whereas the function
symbol do is introduced to construct the term do(a, s),

denoting the successor situation after performing action a
(such as, in a weather simulation scenario, rain) in situation
s. The situation term do(sunshine, do(rain, s)) denotes
the situation resulting from first rain and then sunshine,
which distinguishes itself from the other situation term
do(rain, do(sunshine, s)). It is easy to see that, intuitively,
a situation corresponds to a finite sequence of actions.

The binary predicate @ specifies the order between sit-
uations. For example, s @ s′ stands for that the situation
s′ can be reached by performing one or several actions
from s. s v s′ is an abbreviation of s @ s′ ∨ s = s′. In
addition, a predicate Poss(a, s) is applied to specify the
legality of performing action a in situation s, For example,
Poss(rain, s) ⊃ heavyCloudy says that it is possible to
rain only if the sky is with heavy cloud.

In a particular domain, the language might contain situa-
tion independent relations, like matchLocation(Toronto),
and situation independent functions, like size(Plot2). How-
ever, in many of the more interesting cases, the val-
ues of relations and functions change between situations;
accordingly, a relational fluent, or a functional fluent,
in L is defined as a predicate, or a function, respec-
tively, whose last argument is always a situation (e.g.,
captain(John, do(catchFever, S0)) is a relational fluent,
whereas weight(John, do(recover, s)) is a functional flu-
ent).

IV. SCAD

The ontology of SCAD is formally defined in this section.
Aside from situations and actions, objects in SCAD include
diagram nodes: Ini, Final, Action, Branch, Merge,
Fork, and Join. Functions of actions in SCAD include

• fireJ(j): firing a Join node;
• fireBl(b): firing a Branch node to its left edge;
• fireBr(b): firing a Branch node to its right edge;
• fire(p): firing a node other than Join and Branch.

Functional fluents includes:
• TknsJl(j, s): the number of left tokens at a Join node

j in situation s;
• TknsJr(j, s): the number of right tokens at a Join

node j in s;
• Tkns(p, s): the number of tokens at a non-Join node p

in s.
Situation-independent relations are defined in SS0 of

SCAD, which specifies the structure of an activity diagram
and include:

• LpreL(m,n): the left output of a (Fork or Branch)
node m enters the left input of a Merge or Join node
n, LpreR(m,n), RpreL(m,n), and RpreR(m,n) are
defined in a similar way;

• Lpre(m,n): the left output of a (Fork or Branch)
node m enters the only input of node n that is not of
type Merge or Join, Rpre(m,n) is defined similarly;

• preL(m,n): the only output of a (non-Fork and non-
Branch) node m enters the left input of of a type
Merge or Join node n, preR(m,n) is defined simi-
larly;

• pre(m,n): all cases including the other cases (i.e., the
only input of the node m enters the only input of the
node n), and all of the above cases;

• post(m,n): m leaves n if and only if n enters m.
Definition 3: SCAD is defined as a logical theory Sscad,

which consists several sets of axioms as follows:

Sscad = Df ∪ Sap ∪ Sss ∪ Suna ∪ SS0

where
• Df is the foundational axioms (see [2] for details);
• Sap (action preconditons axioms)

– Poss(fireJ(j), s) ≡
TknsJl(j, s) ≥ 1 ∧ TknsJr(j, s) ≥ 1 (a Join
node j is enabled to fire iff the number of left
tokens and the number of right tokens of it, both
are greater than, or equal to 1);

– Poss(fireBl(b), s) ≡ Tkns(b, s) ≥ 1 (a Branch
node b is enabled to fire to its left iff the number
of tokens it contains is greater than or equals to
1);

– Poss(fireBr(b), s) ≡ Tkns(b, s) ≥ 1 (a Branch
node b is enabled to fire to its right iff the number
of tokens it contains is greater than or equals to
1);

– Poss(fire(p), s) ≡ Tkns(p, s) ≥ 1 (a node p is
enabled to fire iff the number of tokens it contains
is greater than or equals to 1);

• Sss (successor state axioms)
– Tkns(p, do(a, s)) = n ≡ γf (p, t, n, a, s)
∨(Tkns(p, s) = n ∧ ¬∃n′ γf (p, t, n′, a, s))
where γf (p, t, n, a, s)

def
= γfa(p, n, a, s) ∨

γfb
(p, q, n, a, s), referring to the two sets of firing

actions that makes the number of tokens at the non-
Join node p on situation do(a, s) to n, that is:
(1). γfa(p, n, a, s)

def
= (n = Tkns(p, s)− 1∧

(a = fire(p)∨ a = fireBl(p)∨ a = fireBr(p)))
(at situation s, the number of tokens at the node
p, which is of any type but Join, is (n + 1),
and p fires at situation s, making the number
of tokens it contains at the subsequent situation
do(a, s) decreased by 1);
(2). γfb

(p, q, n, a, s)
def
=

((∃q). pre(q, p) ∧ n = Tkns(p, s) − 1 ∧ (a =
fire(q)∨
a = fireBl(q)∨a = fireBr(q)∨a = fireJ(q)))
(at situation s, the number of tokens at place p,
which is of any type but Join, is (n− 1), and the
node q, which is of any type and enters p, fires at

s, making the number of tokens at do(a, s) also to
n);

– TknsJl(p, do(a, s)) = n ≡ γf (p, t, n, a, s)∨
(TknsJl(p, s) = n ∧ ¬∃n′ γf (p, t, n′, a, s))
where γf (p, t, n, a, s)

def
= γfa

(p, n, a, s) ∨
γfb

(p, q, n, a, s), referring to the two sets of firing
actions that makes the number of left tokens at the
Join node p on situation do(a, s) to n, that is:
(1). γfa(p, n, a, s)

def
=

(n = TknsJl(p, s) − 1 ∧ a = fireJ(p)) (at
situation s, the number of left tokens at the node
p, which is of type Join, is (n + 1), and p
fires at situation s, making the number of tokens
it contains at the subsequent situation do(a, s)
decreased by 1);,
(2). γfb

(p, q, n, a, s)
def
= ((∃q). preL(q, p)∧

n = Tkns(p, s) + 1 ∧ (a = fire(q) ∨ a =
fireBl(q)
∨a = fireBr(q) ∨ a = fireJ(q))) (at situation
s, the number of tokens at place p, which is of
type Join, is (n− 1), and the node q, which is of
any type and enters the left edges of p, fires at s,
making the number of left tokens at do(a, s) also
to n),

– The argument for the right tokens of the Join
node, p TknsJr(p, do(a, s)) = n, is similar to the
argument of the left tokens, specified as above.

• Suna (unique name axioms.)
• SS0 (initial situation axioms.)

V. APPLICATIONS

In this section, a few subclasses of SCAD are first defined
and we show that the reachability problems in a particular
subclass is PSPACE-complete. An abbreviation as follows
is used for the specification 2:

exec(s)
def
= (∀a, s).do(a, s) v s ⊃ Poss(a, s).

Next, a SCAD instance (Figure 1) is introduced. Example
use of SCAD is demonstrated by several projection problems
(i.e., the problems of deciding whether a formula is true in
the situation resulting from performing a sequence of ground
actions).

Two dynamical properties of activity diagrams defined in
Section II are formally characterized in SCAD as follows.

• Reachability (Given specified markings Mn, ni is the
specified number of tokens at the nodes pi in Mn)

Qreach(s, p)
def
= ∃s exec(s) ∧ (S0 @ s)∧“ [
Tkns(pi, s) = ni

”
• K-boundedness

Qkbound(s, p)
def
= exec(s) ⊃ Tkns(p, s) ≤ k

2First introduced as Equation 4.5 in [2].

B

F

J

M

Final

Ini

M

Figure 1. An activity diagram

In [4], It is shown that the reachability problem in a
general K-bounded activity diagram is PSPACE-complete,
that is, given a SCAD action theory Sscad, deciding

Sscad ∪Qkbound(s, p) |= Qreach(s, p)

is PSPACE-complete; whereas the problem is NP-Complete
if one further constraint (namely reversibility) is added.

Here we show in addition that
Theorem 1: Given an S ′

scad where its nodes are free of
Branch and Merge types, deciding

S
′

scad ∪Qkbound(s, p) |= Qreach(s, p)

is PSPACE-complete.
Proof: (Sketch.) The same nondeterministic algorithm

for the general case appeared in [4] can still be applied here
to show that the problem is in PSPACE.

To show that it is PSPACE-hard, we transform the
PSPACE-complete Deterministic Linear Space Acceptance
(DLSA) problem (see [1]) into the current problem. The
proof is similar to the PSPACE-hard proof for Theorem 1
in [4], where a PSPACE-complete nondeterministic Linear
Space Acceptance (NLSA) problem is applied. Here the
transition function is easier as no Branch node is needed.
In case a node belongs to multiple components, instead of
using Merge, Branch nodes and poly-bounded duplicates
of the nodes are introduced, and the proof then can be carried
out in essentially the same way as the one for Theorem 1
of [4].

Example 1: A SCAD instance S1 is defined such that
S1 = Df ∪ Sap ∪ Sss ∪ Suna ∪ SS0 where

SS0 = {pre(Ini, B), Lpre(B, F), RpreR(B, J), RpreL(F, J),

LpreL(F, M), preR(j, M), pre(M, Final), Tkns(Ini, S0) = 2,

Tkns(B, S0) = 0, Tkns(F, S0) = 0, TknsJl(J, S0) = 0,

TknsJr(J, S0) = 0, Tkns(J, S0) = 0,

Tkns(M, S0) = 0, Tkns(Final, S0) = 0}

Figure 1 is its pictorial presentation. Now a reachability

problem can be stated as a SCAD entailment problem:
S1 |= ∃s. exec(s) ∧ (S0 @ s) ∧ Tkns(Final, s) ≥ 1?

That is, is there a sequence of executable actions such that
at least one token is delivered to the Final node? Define

−→a = {fire(Ini), fireBl(B), fire(F), F ire(M)},
it can be seen that, let sa = do(−→a , S0) 3,

S1 |= exec(sa) ∧ (S0 @ sa) ∧ Tkns(Final, sa) = 1.

From the fourth foundational axioms, it is obvious that S0 @
sa. The executability of −→a and Tkns(Final, sa) = 1 can
be verified by sequentially applying the four precondition
axioms in Sap and the three successor state axioms in Sss.
For example, Poss(fire(Ini), S0), together with exec(S0),
leads to exec(do(fire(Ini), S0)); whereas
Tkns(Ini, do(fire(Ini), S0)) = 1 and
Tkns(B, do(fire(Ini), S0)) = 1.

Now, let−→
b = {fire(Ini), fire(Ini), fireBr(B),

fireBl(B), fire(F), F ireJ(J), F ire(M), F ire(M)}
It is obvious that Tkns(Final, sb) = 2.

The K-boundedness of S1, meanwhile, can be stated as a
SCAD entailment problem in the form:

S1 |= exec(s) ⊃ Tkns(p, s) ≤ 2?
The proof is based on the observation that all executable
sequences are with finite length.

VI. SUMMARY

In this paper, a graph-theoretic specification for the struc-
tural properties of activity diagrams, with adoptions of the
concept of tokens in Petri-nets to model the dynamics these
diagrams, is proposed. A second-order axiomatization of
this semantics of UML activity diagrams called SCAD is
further provided. The design of SCAD makes use of the
strong correspondence between the situation s in situation
calculus, which is a sequence of actions starting from the
initial state S0, and the marking M in activity diagrams,
which is resulted from a sequence of node firings starting
from the firing of the initial node at initial marking.

REFERENCES

[1] M. Garey and D. Johnson, Computers and intractability -
a guide to NP-completeness. W.H. Freeman and Company,
Cambridge, MA, USA (1979).

[2] R. Reiter, Knowledge in Actioin: Logical foundations for
describing and implementing dynamical systems, The MIT
Press, 2001.

[3] OMG: Unified Modeling Language (OMG UML), Super-
structure, V2.1.2.,(2007).

[4] X. Tan and M. Gruninger, On the computational complexity
of the reachability problem in UML activity diagrams, In pro-
ceedings of the IEEE International Conference on Intelligent
Computing and Intelligent Systems, Shanghai, China (2009),
Vol. 2, 572–576.

3an abbreviation for
do(Fire(M), do(fire(F), do(fireBl(B), do(fire(Ini), S0)))).

