
SCOPE: A Situation Calculus Ontology
of Petri Nets

Xing TAN 1

Semantic Technologies Laboratory, Department of Mechanical and Industrial
Engineering, University of Toronto

Abstract. By axiomatizing the semantics of Petri nets as a first-order (mostly) for-
mal ontology called SCOPE, we propose in this paper a framework for the analysis
of the structural and dynamical properties of Petri nets. More precisely, SCOPE is
built as a Basic Action Theory in Reiter’s version of situation calculus. In addition,
we show the satisfiability of SCOPE, by virtue of the Relative Satisfiability The-
orem. Fundamental structural and dynamical properties of Petri nets described in
SCOPE are also presented, with two example uses of SCOPE given.

Keywords. Petri Nets, Situation Calculus, Basic Action Theory, Ontology, Model
Characterization

Introduction

Petri nets as a powerful modeling tool have long been used to describe complex dynam-
ical systems that involve concurrency, nondeterminism, asynchronism, and intense in-
teractions between events and agents in these systems. The simple formalism that Petri
nets offer has enabled unambiguous graphical representations of Petri nets and facilitated
studies on the properties of Petri nets with mathematical rigor.

One recent application of Petri nets is within the context of the semantic Web, where,
in contrast to the current Web, the semantics of the content and capability are well-
defined such that they are machines-interpretable, enabling automation of a variety of
different operations currently performed by human-beings in essence. In practice, Petri
nets have shown to be quite handy in providing the operational semantics of certain
class of Web services, i.e., Web-accessible service programs or devices. For example, in
[4], in order to automatically describe, compose, simulate, and verify the Web service
compositions, a Petri net formalism is employed to describe the operational semantics
of DARPA Agent Markup Language-Services (DAML-S), a logic language describing
Web services, after the descriptive semantics of DAML-S is first specified by situation
calculus. Our thesis is that, Petri nets should have much broader applicability for the
semantic Web. The rationale for this claim is that the logic action language situation
calculus, particularly its variant as comprehensively studied by Reiter and et al. ([9],
[10]), provides a simple but mathematically rigorous paradigm for axiomatization of
dynamical systems, making it presumably an easy task to develop a situation-calculus-

1E-mail: xtan@mie.utoronto.ca.

based Petri nets action theory. As such, we propose in this paper SCOPE, a situation-
calculus-based ontology of Petri nets.

SCOPE is introduced in Section 3 of this current paper. It adopts the simplicity of
original Petri nets: it contains only one action type, namely, firing of transitions; whereas
only one function value, namely the number of tokens at places, is subject to the change
upon actions. We argue in this section the explicit applicability of certain assumption
(the causal completeness assumption, to be precise) for the development of SCOPE.
By proving that SCOPE satisfies both the unique formula requirement and the function
consistency property, we show in addition that SCOPE is a Basic Action Theory, which
qualifies the applicability of the Relative Satisfiability Theorem on SCOPE in Section 4.

In Section 4, we characterize a class of combinatorial structures and prove both the
satisfiability theorem and the axiomatizability theorem for the class; that is, respectively,
every structure in the class is a model for some subset of SCOPE axioms (including
unique name axioms for actions and all axioms that are uniform in the initial state) and
every model for the subset is isomorphic to some structure in the class. By applying the
Relative Satisfiability Theorem, we also have that such a model can be extended to a
model for all SCOPE axioms. In other words, SCOPE is satisfiable.

Other sections of this paper are as follows. Section 1 and Section 2 provide brief
introductions to Petri nets and Reiter’s situation calculus, respectively. Section 5 further
provides a set of axiomatization to the structure constraints and mathematical properties
of Petri nets and includes two examples of SCOPE use cases. Section 6 summarizes the
paper.

1. Petri Nets

Petri nets and their markings are defined in Section 1.1, whereas several dynamical prop-
erties of Petri nets and structurally restricted subclasses of Petri nets are introduced in
Section 1.2.

1.1. Basic Definitions

Definition 1 A Petri net (PN) is a pair (N,M0) where N is a triple (P, T, F) such that

• P is a finite set of node elements called places;
• T is a finite set of node elements called transitions;
• and F ⊆ (P × T) ∪ (T × P) consists of ordered pairs;

and M0 is the initial marking, a mapping in the form M :P → N , indicating the initial
assignment of a non-negative integer k to each place p in P . (In this case, we say that
the place p is marked with k tokens.)

In general, any markingM forN inPN is defined as a vector (M(p1), . . . ,M(pm))
where p1, . . . , pm is an enumeration of P and M(pi) tokens are assigned to node pi, for
all i such that 1 ≤ i ≤ m.

The elements in P ∪ T are generically called nodes of PN. Given a node u ∈ PN ,
the set •u = {v|(v, u) ∈ F} is the pre-set of u, where each v is the input of u, and the set
u• = {v|(u, v) ∈ F} is the post-set of u, where each v is the output of u. At any marking
M , a place p is marked ifM(p) > 0. A transition t is enabled inM if every place in •t is

marked in M . Enabled transition in M can occur (fire), leading to the successor marking
M ′.

Definition 2 A marking transition fromM toM ′ due to the firing of t (written asM t=⇒
M ′) is defined by

M ′(p) =

M(p)− 1 if p ∈ •t and p 6∈ t•
M(p) + 1 else if p 6∈ •t and p ∈ t•
M(p) otherwise

for every place p.

Graphically, a Petri Net PN can be represented by a bipartite graph, where each place
is represented by a circle, each transition is represented by a rectangle, the flow relation
of the Petri net F is represented by arcs from places to transitions or from transitions
to places, and k black dots will be placed into the rectangle for place p if it is marked
with k tokens at M . Figure 1 (A) is a PN example where transitions T1 and T2 can be
interpreted as switch on and switch off, respectively.

1.2. Petri Nets Properties

The concept of reachable marking is essential to the description and analysis of all prop-
erties (such as reachability, k-boundedness, and reversibility, as defined below) of Petri
nets.

Definition 3 (reachable marking) The transition (firing) sequence σ = t1, ..., tm is a
sequence of transition nodes in T ; a σ is an occurrence sequence of a given Petri net
PN = (N,M0) if M0

t1=⇒ M1, ..., Mm−1
tm=⇒ Mm (written as M σ=⇒ Mm). Also, we

write M ∗=⇒ M ′ and call M ′ is reachable from M if there exists a firing sequence σ
such thatM σ=⇒M ′. The set of all markings reachable fromM is denoted byR(N,M).

Definition 4 (Reachability) The reachability problem for Petri nets is the problem of
finding, given a Petri net (N,M0) and a marking M in it, if M ∈ R(N,M0).

Definition 5 (k-boundedness) Given a Petri net (N,M0), the k-boundedness problem
involves checking whether the number of tokens in each place does not exceed the integer
k for any marking reachable from M0. A 1-bounded Petri net is also said to be “1-safe”.

Definition 6 (Liveness) A Petri net (N,M0) is live if, for any marking M ∈ R(N,M0),
there exists another marking M ′, such that M ∗=⇒M ′, i.e., M ′ is reachable from M .

Definition 7 (Reversibility/Cycleness) A Petri net (N,M0) is reversible ifM0 is reach-
able from each M ∈ R(N,M0).

Definition 8 (Coverability) A Petri net (N,M0) is coverable if there exists a marking
M ′ ∈ R(N,M0) such that for any p ∈ P , M ′(p) ≥M0(p).

Definition 9 (Persistency) A Petri net (N,M0) is persistent if, for any t1 ∈ T and t2 ∈
T , which are both enabled at any M ∈ R(N,M0), t2 should still be enabled in M ′

where M t1=⇒M ′.

Given that Petri nets as a modeling language has rich expressive power, evaluating
properties of a Petri net is often computationally expensive, if possible. However, the
difficulty is largely reduced if we are dealing with certain subclasses of Petri Nets where
their graphical structures are highly constrained. The properties of the subclasses of Petri
nets defined as follows have been thoroughly studied.

Definition 10 A Petri net PN = (N,M0), whereN is (P, T, F), is an S-system if |•t| =
|t•| = 1 for every t ∈ T .

Definition 11 A Petri net PN = (N,M0), where N is (P, T, F), is a T-system if |•p| =
|p•| = 1 for every p ∈ P .

Definition 12 A Petri net PN = (N,M0), whereN is (P, T, F), is a conflict-free system
if p• ⊆ •p for every place p with more than one output transition.

Definition 13 A Petri net PN = (N,M0), where N is (P, T, F), is a free-choice system
if (p, t) ∈ F implies •t× p• ⊆ F for every place p and every transition t.

Later we will show, in Section 5.1, that all of these above properties or subclasses can be
represented easily in SCOPE.

2. Reiter’s Situation Calculus

2.1. Brief Introduction

The situation calculus is a logical language for representing changes upon actions in a
dynamical domain; it is first proposed by McCarthy and Hayes in 1969 [6]. The language
L of situation calculus as stated by [10] is a second-order many-sorted language with
equality.

Three disjoint sorts: action, situation, object (for everything else in the speci-
fied domain) are included in the language L. For example, rain denotes the act of
raining, and putdown(x, y) denotes the act of object x putdown y on the ground.
A situation characterizes a sequence of actions in the domain. The constant situa-
tion S0 is to denote the empty sequence of actions, whereas the function symbol
do is introduced to construct the term do(a, s), denoting the successor situation af-
ter performing action a (such as, in a weather simulation scenario, rain) in situation
s. The situation term do(sunshine, do(rain, s)) denotes the situation resulting from
first rain and then sunshine, which distinguishes itself from the other situation term
do(rain, do(sunshine, s)).

The binary predicate < specifies the order between situations. For example, s < s′

stands for that the situation s′ can be reached by performing one or several actions from
s. s v s′ is an abbreviation of s < s′ ∨ s = s′. In addition, a predicate Poss(a, s)
is applied to specify the legality of performing action a in situation s, For example,
Poss(rain, s) ⊃ heavyCloudy says that it is possible to rain only if the sky is with
heavy cloud.

In a particular domain, the language might contain situation independent relations,
like matchLocation(Toronto), and situation independent functions, like size(Plot2).

However, in many of the more interesting cases, the values of relations and functions
change between situations; accordingly, a relational fluent, or a functional fluent, in L
is defined as a predicate, or a function, respectively, whose last argument is always
a situation (e.g., captain(John, do(catchFever, S0)) is a relational fluent, whereas
weight(John, do(recover, s)) is a functional fluent).

A particular class of situation calculus theories called the Basic Action Theories is
specified in [10] (also briefly presented in the subsequent section), where nice compu-
tational properties holds for operating regression on sentences satisfying certain condi-
tions. For situation calculus at an introductory level, readers are referred to [2] and [1],
where each includes a chapter of situation calculus. In-depth discussion is included in
[10].

2.2. Basic Action Theories

The foundational axioms captures the concept of situation tree in a domain, whereas the
Basic Action Theories are special situation calculus theories where nice theoretical and
computational properties, such as the Relative Satisfiability Theorem, hold. (see [10] for
more details.)

Definition 14 The set Df consists of four foundational axioms as follows

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2 (1)

(∀P).P (S0) ∧ (∀a, s)
(
P (s) ⊃ P (do(a, s))

)
⊃ (∀s)P (s) (2)

¬s < S0 (3)

s < do(a, s′) ≡ s v s′ (4)

Definition 15 A basic action theoryD is a collection of several sets of axioms as follows:

D = Df ∪ Dss ∪ Dap ∪ Duna ∪ DS0

where

• Df is the set of foundational axioms;
• Dss is the set of successor state axioms for functional and relational fluents and

∗ each relational fluent axiom is of the form

F (x1, . . . , xn, do(a, s)) ≡ ΦF (x1, . . . , xn, a, s)

where ΦF (x1, . . . , xn, a, s) is uniform in s;
∗ each functional fluent axiom is of the form

f(x1, . . . , xn, do(a, s)) = y ≡ Φf (x1, . . . , xn, y, a, s)

where Φf (x1, . . . , xn, y, a, s) is uniform in s;
∗ each functional fluent satisfies the consistency property (defined below);

• Dap is the set of precondition axioms of the form

Poss(A(x1, . . . , xn), s) ≡ ΠA(x1, . . . , xn, s),

where A is an n-ary action function symbol and ΠA(x1, . . . , xn, s) is uniform in
s;

• Duna is the action unique name axioms;
• DS0 is a set of first-order sentences that are uniform in S0.

Definition 16 A functional fluent f satisfies the consistency property if
Duna ∪ DS0 |=
(∀~x).(∃y)φf (~x, y, a, s) ∧

(
(∀y, y′).φf (~x, y, a, s) ∧ φf (~x, y′, a, s) ⊃ y = y′

)
and f(~x, do(a, s)) = y ≡ φf (~x, y, a, s) is the corresponding successor state axioms for
f in Dss (Definition 4.4.5 in [10]) .

The concept of the uniform formulas is formally defined in Definition 4.4.1 of [10].
Intuitively, the uniformity requirement for the precondition axioms and successor state
axioms assure that the qualification of an action and the properties in the successor situ-
ation, respectively, are determined entirely by the current situation s.

One important theoretical result with respect to the Basic Action Theories is stated
as follows. In Section 4, we will show its technical importance towards proving the sat-
isfiability of SCOPE.

Theorem 1 (Relative Satisfiability) A basic action theory D is satisfiable iff Duna ∪
DS0 is (Theorem 4.4.7 in [10], and see [9] for the proof).

3. SCOPE

SCOPE is formally defined in Sectin 3.1. In Section 3.2, we show that indeed SCOPE
constructs a Basic Action Theory.

3.1. The Ontology

SCOPE is defined as a logical theory S, which consists of several sets of axioms as
follows:

S = Df ∪ Sap ∪ Sss ∪ Suna ∪ SS0

where

• Df is the foundational axioms;
• Sap (Action Precondition Axioms)

Poss(fire(t), s) ≡ pre(p, t) ⊃ NumTkns(p, s) ≥ 1

• Sss (Successor State Axioms)
NumTkns(p, do(a, s)) = n ≡
γf (p, t, n, a, s) ∨ (NumTkns(p, s) = n ∧ ¬(∃n′) γf (p, t, n′, a, s)), where 2

γf (p, t, n, a, s)
def
= γfa(p, t, n, a, s) ∨ γfb

(p, t, n, a, s),

γfa(p, t, n, a, s)
def
= ((∃t).pre(t, p) ∧ ¬post(t, p) ∧ n = NumTkns(p, s) + 1 ∧

a = fire(t)),

γfb
(p, t, n, a, s)

def
= ((∃t).pre(p, t)∧¬post(p, t)∧n = NumTkns(p, s)−1∧a =

fire(t)).

2γf (p, t, n, a, s), γfa (p, t, n, a, s), and γfb
(p, t, n, a, s) are simply abbreviations.

• Suna (Unique Name Axioms) 3

fire(t1) = fire(t2) ⊃ (t1 = t2)

• SS0

∗ pre(p, t) ≡ post(t, p), which means that the place p is the input of the transi-
tion t if and only if t is the output of p;

∗ for each arc from transition t to place p, define pre(p, t); similarly, define
pre(t, p);

∗ for each place p with initial marking k, define NumTkns(k, S0) = k;

While modeling dynamical systems usually is a complicated task involving identifying
complex networks of causal influences, axiomatizing Petri nets is performed directly on
the abstract mathematical models and thus is free of this particular type of difficulty.
In particular, we now address the relationship between the set of effect axioms Sef for
SCOPE and Sss in SCOPE with respect to the Causal Completeness Assumption. In
short, Sef is not part of S but is entailed by S.

Definition 17 The set of effect axioms Sef in SCOPE are defined as follows

pre(t, p) ∧ ¬post(t, p) ⊃ NumTkns(p, do(fire(t), s)) = NumTkns(p, s) + 1,

pre(p, t) ∧ ¬post(p, t) ⊃ NumTkns(p, do(fire(t), s)) = NumTkns(p, s)− 1,

which is logically equivalent to

γf (p, t, n, a, s) ⊃ NumTkns(p, t, do(a, s)) = n. (5)

Given the clear definition on the transition rules in Petri nets, we know that we can
make a causal completeness assumption (claim) from Equation 5; that is, it includes
all the conditions under which the only action in the domain fire can cause the fluent
NumTkns to have a value n in the successor situation. The Explanation Closure Axiom
corresponding to this claim is

NumTkns(p, t, do(a, s)) 6= NumTkns(p, t, s) ⊃ (∃t)γf (p, t, n, a, s) (6)

Theorem 2 Equation 5 and Equation 6 together, are logically equivalent to the only
successor state axiom in SCOPE

NumTkns(p, do(a, s)) = n ≡

γf (p, t, n, a, s) ∨ (NumTkns(p, s) = n ∧ ¬(∃n′) γf (p, t, n′, a, s))

Proof. see [10] for a proof on general cases. 2

It is worth noting that the consistency of Sef for SCOPE relies on the holding of the
sentence

¬(∃p, t, n, n′, a, s).γf (p, t, n, a, s) ∧ γf (p, t, n′, a, s) ∧ n 6= n′ (7)

3In general, for two distinct action a1 and a2, it is required in Suna that a1(~x) 6= a2(~y), but here they are
not included as in SCOPE we have only one action “fire”.

which in SCOPE states that the action fire cannot assign two different values to the fluent
NumTkns to the successor situation whereas the sentence is simply entailed by applying
Suna.

3.2. A Basic Action Theory

Theorem 3 SCOPE constructs a Basic Action Theory.

Proof. It can be easily verified that the uniform requirement on the current situation s is
satisfied in the precondition axioms, the successor state axioms, and the initial condition
axioms of SCOPE.

The ontology contains one successor state axiom, for the only functional fluent
NumTkns. Now we show the function consistency property as defined in Section 2 is
satisfied with respect to the NumTkns.

The only successor state axiom in Sss can be written in the form

NumTkns(p, do(a, s)) = n ≡ φf (p, t, y, a, s)

where

φf (p, t, y, a, s)
def
= γf (p, t, n, a, s)∨ (NumTkns(p, s) = n∧¬(∃n′) γf (p, t, n′, a, s)).

Similar to the proof for Equation 7, we have

Duna |= (∀p, t, n, n′, a, s). γf (p, t, n, a, s) ∧ γf (p, t, n′, a, s) ⊃ n = n′,

and from the definition of φf , we have

Duna |= (∀p, t, n, n′, a, s). φf (p, t, n, a, s) ∧ φf (p, t, n′, a, s) ⊃ n = n′.

Based on the definition of SS0 , we have

SS0 |= (∀p, t)(∃n)φf (p, t, n, a, S0)

Thus,

(∀p, t, n, n′, a, s) φf (p, t, n, a, s) ∧ φf (p, t, n′, a, s) ⊃ n = n′∪

(∀p, t)(∃n)φf (p, t, n, a, s);

that is, informally, for every place p, there exists a unique value of token numbers n at
initial situation S0, and this uniqueness is maintained at every successor situations.

Hence, Duna ∪ DS0 |=
(∀p, t).(∃n)φf (p, t, n, a, s) ∧ (∀n, n′, a, s)

(
φf (p, t, n, a, s) ∧ φf (p, t, n′, a, s) ⊃ n =

n′
)
. 2

4. Satisfiability of SCOPE

The bipartite incidence structure defined as follows is the building block for specifying
the models of SCOPE.

Definition 18 A bipartite incidence structure is a tuple B = (Ω1,Ω2, in), where Ω1,Ω2

are disjoint sets such that in ⊆ (Ω1×Ω2). Two elements that are related by in are called
incident.

Definition 19 A Petri net structure Pini is defined to include a 7-tuple in the form
〈P, T, F,N ,PtoT,TtoP,NumOfTkns〉 where

• P , T , F , N are disjoint sets, presumably standing for places, transitions, fire
actions, and natural numbers, respectively;

• 〈P, T,PtoT〉, 〈T, P,TtoP〉, and 〈P,N ,NumOfTkns〉 are bipartite incidence
structures;

In addition, Pini contains,

• the unary function fire : T → F is defined such that, for any 〈t1, f1〉 and 〈t2, f2〉
in fire, f1 = f2 only if t1 = t2;

• the relation set pre : (P ∪ T) × (P ∪ T) is defined such that, for any two nodes
n1, n2 ∈ (P ∪ T), 〈n1, n2〉 ∈ pre iff 〈n1, n2〉 ∈ PtoT or 〈n1, n2〉 ∈ TtoP;

• the relation set post : (P ∪ T) × (P ∪ T) is defined such that 〈n1, n2〉 ∈ post iff
〈n2, n1〉 ∈ pre.

Theorem 4 Any structure in Pini is a model of Suna_S0 .

Proof. (Sketch.)
Suppose we have a P ∈ Pini (Pini is obviously non-empty), it is easy to verify that each
axiom in Suna_S0 is satisfied by P, that is:
P |= fire(t1) = fire(t2) ⊃ (t1 = t2) (by definition of fire)
P |= pre(p, t) ≡ post(t, p) (by definition of pre and post)
P |= pre(n1, n2) for each pre(n1, n2) ∈ SS0 (by pre),
P |= NumTkns(k, S0) = k where NumTkns(k, S0) = k ∈ SS0 (by definition of
〈P,N ,NumOfTkns〉). 2

Theorem 5 Any model M of Suna_S0 is isomorphic to a structure in Pini.

Proof. (Sketch.) Let M be a many typed model of Suna_S0 , it is required that
M |= fire(t1) = fire(t2) ⊃ (t1 = t2)
M |= pre(p, t) ≡ post(t, p)
M |= pre(n1, n2) for each pre(n1, n2) ∈ SS0 ,
M |= NumTkns(k, S0) = k where NumTkns(k, S0) = k ∈ SS0 ,
which assures that M is an isomorphism to some P in Pini. 2

To this end, we are able to obtain the following satisfiability theorem for SCOPE.

Theorem 6 SCOPE is satisfiable.

Proof. Since Suna_S0 is satisfiable by any M corresponding to some P ∈ Pini, S is
also satisfiable, as by Pirri and Reiter’s Relative Satisfiability Theorem ([9], [10]), M
can be extended to some M′, which is a model of S. 2

5. Applications of SCOPE

5.1. Axiomatization of SCOPE Subclasses

In this section, we provide an axiomatization (called Sps) to the subclasses and properties
of Petri nets mentioned in Section 2. With Sps and S, two important tasks specified as
follows, for the Petri nets Ontology designers, developers, and users can be performed:
(1) to assure that the property say α ∈ Sps holds in the ontology to be developed; or (2)
to check whether α ∈ Sps can be entailed from the existing ontology; that is, we can (1)
check S ∪ α is satisfiable; or (2) check S |= α.

The specifications might use the following two abbreviations: 4

enabled(t, s)
def
= pre(p, t) ⊃ NumTkns(p, s) ≥ 1

exec(s)
def
= (∀a, s).do(a, s) v s ⊃ Poss(a, s).

Dynamical properties of Petri nets are defined as follows.

Cycle

(∃s). exec(s) ∧ s 6= S0 ∧NumTkns(p, s) = NumTkns(p, S0)

Reachability Given Mn, certain specified Marking on places, we have

(∃s). exec(s) ∧NumTkns(p0, s) = n0 ∧ . . . NumTkns(pi, s) = ni,

where ni is the specified number of tokens at the place pi in the Marking Mn.

K-Boundedness

exec(s) ⊃ NumTkns(p, s) ≤ k

Liveness

exec(s) ⊃ (∃s1). s < s1 ∧ exec(s1)

Reversibility

exec(s) ⊃ (∃s1). s < s1 ∧ exec(s1) ∧NumTkns(p, s1) = NumTkns(p, S0),

where S0 is the home situation corresponding the home marking of Petri nets.

4The second one is introduced as Equation 4.5 in [10].

Coverability (s1 is covered by s2)

(∃s1, s2). exec(s1) ∧ exec(s2) ∧NumTkns(p, s1) ≤ NumTkns(p, s2)

Persistence

¬(∃s, t1, t2). exec(s)∧ enabled(t1, s)∧ enabled(t2, s)∧¬enabled(t1, do(fire(t1), s))

Restricted classes of Petri nets are defined as follows.

S-systems

pre(p1, t) ∧ pre(p2, t) ⊃ p1 = p2, post(p1, t) ∧ post(p2, t) ⊃ p1 = p2

T-systems

pre(t1, p) ∧ pre(t2, p) ⊃ t1 = t2, post(t1, p) ∧ post(t2, p) ⊃ t1 = t2

Conflict-Free

∃(t1, t2) post(p, t1) ∧ post(p, t2) ∧ t1 6= t2 ⊃ pre(t3, p) ∧ post(p, t3)

Free-Choice

pre(p, t) ⊃ (¬∃p1 pre(p1, t) ∧ p1 6= p) ∨ (¬∃t1 pre(p, t1) ∧ t1 6= t)

5.2. Examples

We now demonstrate the use of SCOPE by giving two examples. They are adapted from
Figure 17 (h) of [5], which is a live, reversible, but 1-bounded Petri net instance, and
Figure 17 (c) of [5], which is a non-live, irreversible, and 1-bounded Petri net instance.
Their pictorial representations are shown in Figure 1 as (A) and (B). Also, the principle
of induction for executable situations (PIES) as a consequence of S (see also [10]) turns
out to be helpful:

(∀P).P (S0)∧ (∀a, s)
(
P (s)∧ exec(s)∧Poss(a, s) ⊃ P (do(a, s))

)
⊃ (∀s).exec(s) ⊃ P (s).

Example 1 S1 = Df ∪ Sap ∪ Sss ∪ Suna ∪ SS0 where

SS0 = {pre(p, t) ≡ post(t, p), pre(T1, P1), pre(P1, T2), pre(T2, P2), pre(P2, T1),

NumTkns(P1, S0) = 1, NumTkns(P2, S0) = 0.}

1-boundedness: S1 |= exec(s) ⊃ NumTkns(p, s) ≤ 1.
Proof. We prove 1-boundedness by showing
exec(s) ⊃ [(NumTkns(P1, s) = 1∧NumTkns(P2, s) = 0)∨ (NumTkns(P2, s) =
1 ∧NumTkns(P1, s) = 0)].

Now define ψ(s)
def
= (NumTkns(P1, s) = 1 ∧NumTkns(P2, s) = 0)∨

(NumTkns(P2, s) = 1 ∧NumTkns(P1, s) = 0),

P1

T2

P2

T1

P1

T1 T2

P2 P3

P4

T3 T4

()A ()B

Figure 1. Two examples of Petri nets: (A) 1-bounded, live, and reversible; (B) 1-bounded, non-live, and irre-
versible.

thus ψ(do(fire(t), s))
def
=

(NumTkns(P1, do(fire(t), s)) = 1 ∧NumTkns(P2, do(fire(t), s)) = 0)
∨(NumTkns(P2, do(fire(t), s)) = 1 ∧NumTkns(P1, do(fire(t), s)) = 0).

ψ(S0) holds trivially, as (NumTkns(P1, S0) = 1 ∧NumTkns(P2, S1) = 0).

Now assume ψ(s) ∧ exec(s) ∧ Poss(a, s) holds, we have two cases to consider

1. (NumTkns(P1, s) = 1 ∧NumTkns(P2, s) = 0)
2. (NumTkns(P2, s) = 1 ∧NumTkns(P1, s) = 0)

By using the SSA, for (1)
(NumTkns(P2, do(fire(t), s)) = 1 ∧NumTkns(P1, do(fire(t), s)) = 0)
will be obtained, for (2)
(NumTkns(P2, do(fire(t), s)) = 0 ∧NumTkns(P1, do(fire(t), s)) = 1)
will hold, obviously, (1) and (2) lead to the holdness of ψ(do(fire(t), s)); that is,
(∀a, s)[ψ(s) ∧ exec(s) ∧ Poss(a, s) ⊃ ψ(do(a, s)).

By PIES, we have (∀s).exec(s) ⊃ ψ(s).
And finally, exec(s) ⊃ NumTkns(p, s) ≤ 1. 2

Liveness We also use the two cases. To prove exec(s) ⊃ ∃s1 s < s1 ∧ exec(s1) by
proving

1. exec(s) ∧ (NumTkns(P1, s) = 1 ∧ NumTkns(P2, s) = 0) ⊃ ∃s1 s < s1 ∧
exec(s1);

2. exec(s) ∧ (NumTkns(P1, s) = 0 ∧ NumTkns(P2, s) = 1) ⊃ ∃s1 s < s1 ∧
exec(s1).

For (1), we will show that do(fire(T2), s) is such kind of s1; similarly, for (2), we have
do(fire(T1), s).

Reversibility We just show that any situation is the same as S0 or its subsequent
situation is S0.

Example 2 S2 = Df ∪ Sap ∪ Sss ∪ Suna ∪ SS0 where SS0 = {pre(p, t) ≡
post(t, p), pre(T1, P1), pre(P1, T2), pre(T2, P2), pre(P2, T1),
pre(T4, P3), pre(P3, T3), pre(T3, P4), pre(P4, T4), pre(P2, T3),
NumTkns(P1, S0) = 1, NumTkns(P3, S0) = 1,
NumTkns(P2, S0) = 0, NumTkns(P4, S0) = 0.}

Observe, and also it is easy to see that the theory entails, that

• T4 is possible to execute only if T3 is executed;
• T1 and T2 execute in turn from initial situation S0 before T3 can execute;
• the number of tokens at both P1 and P2 will be zero after the execution of T3;
• no successor situation after the execution of T4 is executable.

Thus the non-liveness of Sexample is entailed:
Sexample |= ¬(exec(s) ⊃ ∃s1s < s1 ∧ exec(s1)),
as, for example, at the executable situation do(fire(T3), do(fire(T2), S0)) the transi-
tion T1 is no longer live. Meanwhile, the irreversibility is implied from this non-liveness,
for this example in particular.

In order to show the 1-boundedness, we can show that, after T3 is executed, T4 must be
executed and deadlock is reached, whereas all places are bounded before T3 is executed.
More specifically, we can use PIES to show that at any of these executable situations, we
have either NumTkns(P1, S0) = 1 ∧NumTkns(P2, S0) = 0,
or NumTkns(P1, S0) = 0 ∧NumTkns(P2, S0) = 1.

Thus the example is also 1-bounded:
Sexample |= exec(s) ⊃ NumTkns(p, s) ≤ 1.

6. Summary

In this paper, we provide a formal (mostly in first-order logic) ontology called SCOPE for
Petri nets. The design of SCOPE makes the full use of the strong correspondence between
the situation s in situation calculus, which is a sequence of actions starting from the initial
state S0, and the marking M in Petri nets, which results from a sequence of transition
firings starting from the initial markingM0. Consequentially, SCOPE inherits completely
the simplicity in formalism of Petri nets and their powerful expressive capability.

We define SCOPE as a Basic Action Theory of situation calculus such that we can
take advantage of the Relative Satisfiability Theorem for Basic Action Theories and
show in an easy and straightforward manner that SCOPE is satisfiable. This efforts en-
dorses the qualification of SCOPE, to be an operational language describing Web service
in semantic Web, or other use cases where unambiguous interpretations of operational
semantics are strictly required.

Aside from the satisfiability of SCOPE, this paper introduces a combinatorial struc-
ture and uses it to fully characterize some core subset axioms (Suna_S0) of SCOPE by
providing the axiomatizability theorem and the satisfiability theorem for Suna_S0 . We
will consider characterizing SCOPE completely in a future paper. Note that we often call
Suna_S0 as a domain theory, since, different from other sets in the ontology, it is domain
dependent.

It is somewhat surprising how much reasoning tasks this small ontology can support.
While it is the case that this benefit is largely empowered by applying second-order based
foundational axioms, in reality, any concrete reasoning task can always use a replacement
of a set of first-order axioms.

Major related work includes [7], and [3]. In [3], the semantics are first described by
UML classes models, and then redirected into Protege, which is a logic-based ontology
development tool, and finally presented in (Resource Description Framework) RDF and
Web Ontology Language (OWL) formalisms. Given that the semantics of UML classes
models have yet to be formally specified, model-theoretic results on this complicated
semantic mapping process are not given in [3] and are intrinsically difficult to obtain
indeed. Similarly, the Generic Process Model (GPM) semantic for Petri net, proposed in
[7], lacks the arguments of the unique interpretations of GPM.

Future work on and beyond SCOPE can be divided into four categories as follows.
One, extend SCOPE to include more features of high-level Petri nets; two, formally char-
acterize several subclasses of SCOPE theories such that reasoning with specific queries
are tractable; three, implement a stand-alone SCOPE reasoning system, preferably in
the logic programming language Prolog; four, investigate SCOPE in concurrent or dis-
tributed systems, incorporating earlier work such as [8].

Acknowledgements

Technical guidance from Professor Michael Gruninger and the financial support of the
NIST grant 60NANB7D6143 to this work are deeply appreciated. I am grateful to the
anonymous reviewers for their detailed comments and suggestions.

References

[1] R. Brachman and H. Levesque, Knowledge representation and reasoning, Morgan Kaufmann, 2004.
[2] F. Lin, Situation Calculus, In F. Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of Knowledge

Representation, (2008), 649-669, Elsevier.
[3] D. Gasevic and V. Devedzic J. Davies, Reusing Petri nets through the semantic Web, ESWS, LNCS

3053,(2004), 284-298.
[4] S. Narayanan and S. McIlraith, Analysis and simulation of Web services, Computer networks, 42,

(2003), 675-693.
[5] T. Murata, Petri nets: properties, analysis and applications, Proceedings of the IEEE, 77(4), (1989),

541-580.
[6] J. McCarthy and P. Hayes, Some philosophical problems from the standpoint of artificial intelligence, In

B. Meltzer and D. Michie, editors, Machine Intelligence (1969), 463-502, Edinburgh University Press,
Edinburgh, Scotland.

[7] P. Soffer, M. Kaner, and Y. Wand, Assigning ontology-based semantics to process models: the case of
Petri nets, CAiSE, LNCS5074, (2008), 16-31.

[8] M. Nielsen and V. Sassone, Petri Nets and Other Models of Concurrency. In: Lectures on Petri Nets I:
Basic Models. (1998), 587-642.

[9] F. Pirri and R. Reiter, Some contributions to the metatheory of the situation calculus, J. ACM, 46(3)
(1999), 325-361.

[10] R. Reiter, Knowledge in Actioin: Logical foundations for describing and implementing dynamical sys-
tems, The MIT Press, 2001.

